Matches in SemOpenAlex for { <https://semopenalex.org/work/W1972043917> ?p ?o ?g. }
- W1972043917 endingPage "253" @default.
- W1972043917 startingPage "249" @default.
- W1972043917 abstract "In this article we report about a successful application of modern machine learning technology, namely Support Vector Machines, to the problem of assessing the ‘drug-likeness' of a chemical from a given set of descriptors of the substance. We were able to drastically improve the recent result by Byvatov et al. (2003) on this task and achieved an error rate of about 7% on unseen compounds using Support Vector Machines. We see a very high potential of such machine learning techniques for a variety of computational chemistry problems that occur in the drug discovery and drug design process." @default.
- W1972043917 created "2016-06-24" @default.
- W1972043917 creator A5035416263 @default.
- W1972043917 creator A5048319087 @default.
- W1972043917 creator A5079593633 @default.
- W1972043917 creator A5082698816 @default.
- W1972043917 creator A5086009538 @default.
- W1972043917 creator A5089166647 @default.
- W1972043917 date "2005-02-08" @default.
- W1972043917 modified "2023-10-11" @default.
- W1972043917 title "Classifying ‘Drug-likeness' with Kernel-Based Learning Methods" @default.
- W1972043917 cites W2010595835 @default.
- W1972043917 cites W2051381803 @default.
- W1972043917 cites W2114281975 @default.
- W1972043917 cites W2116296021 @default.
- W1972043917 cites W2122111042 @default.
- W1972043917 cites W2133679578 @default.
- W1972043917 cites W2140095548 @default.
- W1972043917 cites W2156909104 @default.
- W1972043917 cites W4240768087 @default.
- W1972043917 doi "https://doi.org/10.1021/ci049737o" @default.
- W1972043917 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15807485" @default.
- W1972043917 hasPublicationYear "2005" @default.
- W1972043917 type Work @default.
- W1972043917 sameAs 1972043917 @default.
- W1972043917 citedByCount "75" @default.
- W1972043917 countsByYear W19720439172012 @default.
- W1972043917 countsByYear W19720439172013 @default.
- W1972043917 countsByYear W19720439172014 @default.
- W1972043917 countsByYear W19720439172015 @default.
- W1972043917 countsByYear W19720439172016 @default.
- W1972043917 countsByYear W19720439172017 @default.
- W1972043917 countsByYear W19720439172018 @default.
- W1972043917 countsByYear W19720439172019 @default.
- W1972043917 countsByYear W19720439172020 @default.
- W1972043917 countsByYear W19720439172021 @default.
- W1972043917 countsByYear W19720439172022 @default.
- W1972043917 crossrefType "journal-article" @default.
- W1972043917 hasAuthorship W1972043917A5035416263 @default.
- W1972043917 hasAuthorship W1972043917A5048319087 @default.
- W1972043917 hasAuthorship W1972043917A5079593633 @default.
- W1972043917 hasAuthorship W1972043917A5082698816 @default.
- W1972043917 hasAuthorship W1972043917A5086009538 @default.
- W1972043917 hasAuthorship W1972043917A5089166647 @default.
- W1972043917 hasBestOaLocation W19720439172 @default.
- W1972043917 hasConcept C111919701 @default.
- W1972043917 hasConcept C114614502 @default.
- W1972043917 hasConcept C119857082 @default.
- W1972043917 hasConcept C12267149 @default.
- W1972043917 hasConcept C127413603 @default.
- W1972043917 hasConcept C136197465 @default.
- W1972043917 hasConcept C154945302 @default.
- W1972043917 hasConcept C177264268 @default.
- W1972043917 hasConcept C185592680 @default.
- W1972043917 hasConcept C199360897 @default.
- W1972043917 hasConcept C201995342 @default.
- W1972043917 hasConcept C2780451532 @default.
- W1972043917 hasConcept C33923547 @default.
- W1972043917 hasConcept C41008148 @default.
- W1972043917 hasConcept C55493867 @default.
- W1972043917 hasConcept C74187038 @default.
- W1972043917 hasConcept C74193536 @default.
- W1972043917 hasConcept C98045186 @default.
- W1972043917 hasConceptScore W1972043917C111919701 @default.
- W1972043917 hasConceptScore W1972043917C114614502 @default.
- W1972043917 hasConceptScore W1972043917C119857082 @default.
- W1972043917 hasConceptScore W1972043917C12267149 @default.
- W1972043917 hasConceptScore W1972043917C127413603 @default.
- W1972043917 hasConceptScore W1972043917C136197465 @default.
- W1972043917 hasConceptScore W1972043917C154945302 @default.
- W1972043917 hasConceptScore W1972043917C177264268 @default.
- W1972043917 hasConceptScore W1972043917C185592680 @default.
- W1972043917 hasConceptScore W1972043917C199360897 @default.
- W1972043917 hasConceptScore W1972043917C201995342 @default.
- W1972043917 hasConceptScore W1972043917C2780451532 @default.
- W1972043917 hasConceptScore W1972043917C33923547 @default.
- W1972043917 hasConceptScore W1972043917C41008148 @default.
- W1972043917 hasConceptScore W1972043917C55493867 @default.
- W1972043917 hasConceptScore W1972043917C74187038 @default.
- W1972043917 hasConceptScore W1972043917C74193536 @default.
- W1972043917 hasConceptScore W1972043917C98045186 @default.
- W1972043917 hasIssue "2" @default.
- W1972043917 hasLocation W19720439171 @default.
- W1972043917 hasLocation W19720439172 @default.
- W1972043917 hasLocation W19720439173 @default.
- W1972043917 hasOpenAccess W1972043917 @default.
- W1972043917 hasPrimaryLocation W19720439171 @default.
- W1972043917 hasRelatedWork W1996541855 @default.
- W1972043917 hasRelatedWork W2355927362 @default.
- W1972043917 hasRelatedWork W2365088826 @default.
- W1972043917 hasRelatedWork W2902189168 @default.
- W1972043917 hasRelatedWork W2961085424 @default.
- W1972043917 hasRelatedWork W2963260880 @default.
- W1972043917 hasRelatedWork W3195168932 @default.
- W1972043917 hasRelatedWork W4286629047 @default.
- W1972043917 hasRelatedWork W4306674287 @default.
- W1972043917 hasRelatedWork W4224009465 @default.
- W1972043917 hasVolume "45" @default.