Matches in SemOpenAlex for { <https://semopenalex.org/work/W1972045259> ?p ?o ?g. }
- W1972045259 endingPage "29" @default.
- W1972045259 startingPage "14" @default.
- W1972045259 abstract "Abstract Static snow depth retrieval algorithms tend to underestimate the snow depth at the beginning of the snow season and overestimate the snow depth at the end of the snow season because the snow characteristics vary with the age of snow cover. A novel snow depth/water equivalent (SWE) data retrieval algorithm from passive microwave brightness temperature is proposed based on a priori snow characteristics, including the grain size, density and temperature of the layered snowpack. The layering scheme was established based on the brightness temperature difference (TBD) at two different frequencies, which indicates volume scattering, whereas the snow grain size and density of each layer were parameterized according to the age of the snow cover, and the snow temperature and temperature at the snow/soil interface were determined by the air temperature and snow depth. Furthermore, the microwave emission model of layered snowpacks (MEMLS) was used to simulate the brightness temperature at 10 GHz, 18 GHz and 36 GHz based on the a priori snow characteristics including snow grain size, density, depth and snow layering. Finally, three look-up tables (one layer, two layers and three layers) were generated for each day, which represent the relationship between the brightness temperatures at 10 GHz, 18 GHz and 36 GHz and snow depth. To avoid underestimation caused by the saturation of the microwave signal at 36 GHz, the TBD1 (the difference of brightness temperature at 18 and 36 GHz) was used to estimate the snow depth if TBD1 was less than 40 K, and TBD2 (the difference of the brightness temperature at 10 and 18 GHz) was used if TBD1 was greater than 40 K. The snow depth and SWE determined by this new algorithm were validated by snow measurements at thirteen meteorological stations in Xinjiang, China from 2003 to 2010 and compared with existing SWE products from the National Snow and Ice Data Center (NSIDC), the Environmental and Ecological Science Data Center for West China (WESTDC), the European Space Agency (ESA) and measurements with a snow course. The results showed that the root mean squared error (RMSE) and the bias from this new algorithm were greatly reduced compared to NSIDC, moderately reduced compared to ESA and slightly reduced compared to WESTDC. The understanding of a priori local snow characteristics can improve the accuracy of snow depth and snow water equivalent estimation from passive microwave remote sensing data." @default.
- W1972045259 created "2016-06-24" @default.
- W1972045259 creator A5007114408 @default.
- W1972045259 creator A5032764121 @default.
- W1972045259 creator A5089743220 @default.
- W1972045259 creator A5091837236 @default.
- W1972045259 date "2012-12-01" @default.
- W1972045259 modified "2023-10-12" @default.
- W1972045259 title "Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China" @default.
- W1972045259 cites W1970641180 @default.
- W1972045259 cites W1978524841 @default.
- W1972045259 cites W1987288027 @default.
- W1972045259 cites W2000703424 @default.
- W1972045259 cites W2008816737 @default.
- W1972045259 cites W2019355495 @default.
- W1972045259 cites W2021964057 @default.
- W1972045259 cites W2031103830 @default.
- W1972045259 cites W2035466844 @default.
- W1972045259 cites W2036842696 @default.
- W1972045259 cites W2046211138 @default.
- W1972045259 cites W2048903028 @default.
- W1972045259 cites W2053026343 @default.
- W1972045259 cites W2054441386 @default.
- W1972045259 cites W2057421428 @default.
- W1972045259 cites W2074418666 @default.
- W1972045259 cites W2080367660 @default.
- W1972045259 cites W2084187322 @default.
- W1972045259 cites W2089616742 @default.
- W1972045259 cites W2094269081 @default.
- W1972045259 cites W2111951939 @default.
- W1972045259 cites W2121903748 @default.
- W1972045259 cites W2127321683 @default.
- W1972045259 cites W2131010628 @default.
- W1972045259 cites W2135025425 @default.
- W1972045259 cites W2141018440 @default.
- W1972045259 cites W2144546429 @default.
- W1972045259 cites W2146846308 @default.
- W1972045259 cites W2148942469 @default.
- W1972045259 cites W2155986922 @default.
- W1972045259 cites W2160594640 @default.
- W1972045259 cites W2165557878 @default.
- W1972045259 cites W2166252673 @default.
- W1972045259 cites W2174732504 @default.
- W1972045259 cites W4232772892 @default.
- W1972045259 cites W59078114 @default.
- W1972045259 doi "https://doi.org/10.1016/j.rse.2011.08.029" @default.
- W1972045259 hasPublicationYear "2012" @default.
- W1972045259 type Work @default.
- W1972045259 sameAs 1972045259 @default.
- W1972045259 citedByCount "123" @default.
- W1972045259 countsByYear W19720452592013 @default.
- W1972045259 countsByYear W19720452592014 @default.
- W1972045259 countsByYear W19720452592015 @default.
- W1972045259 countsByYear W19720452592016 @default.
- W1972045259 countsByYear W19720452592017 @default.
- W1972045259 countsByYear W19720452592018 @default.
- W1972045259 countsByYear W19720452592019 @default.
- W1972045259 countsByYear W19720452592020 @default.
- W1972045259 countsByYear W19720452592021 @default.
- W1972045259 countsByYear W19720452592022 @default.
- W1972045259 countsByYear W19720452592023 @default.
- W1972045259 crossrefType "journal-article" @default.
- W1972045259 hasAuthorship W1972045259A5007114408 @default.
- W1972045259 hasAuthorship W1972045259A5032764121 @default.
- W1972045259 hasAuthorship W1972045259A5089743220 @default.
- W1972045259 hasAuthorship W1972045259A5091837236 @default.
- W1972045259 hasConcept C100970517 @default.
- W1972045259 hasConcept C111472728 @default.
- W1972045259 hasConcept C127313418 @default.
- W1972045259 hasConcept C138885662 @default.
- W1972045259 hasConcept C153294291 @default.
- W1972045259 hasConcept C162324750 @default.
- W1972045259 hasConcept C166957645 @default.
- W1972045259 hasConcept C187736073 @default.
- W1972045259 hasConcept C191935318 @default.
- W1972045259 hasConcept C197046000 @default.
- W1972045259 hasConcept C205649164 @default.
- W1972045259 hasConcept C2983043445 @default.
- W1972045259 hasConcept C3018601724 @default.
- W1972045259 hasConcept C39432304 @default.
- W1972045259 hasConcept C62649853 @default.
- W1972045259 hasConcept C75553542 @default.
- W1972045259 hasConcept C96250715 @default.
- W1972045259 hasConceptScore W1972045259C100970517 @default.
- W1972045259 hasConceptScore W1972045259C111472728 @default.
- W1972045259 hasConceptScore W1972045259C127313418 @default.
- W1972045259 hasConceptScore W1972045259C138885662 @default.
- W1972045259 hasConceptScore W1972045259C153294291 @default.
- W1972045259 hasConceptScore W1972045259C162324750 @default.
- W1972045259 hasConceptScore W1972045259C166957645 @default.
- W1972045259 hasConceptScore W1972045259C187736073 @default.
- W1972045259 hasConceptScore W1972045259C191935318 @default.
- W1972045259 hasConceptScore W1972045259C197046000 @default.
- W1972045259 hasConceptScore W1972045259C205649164 @default.
- W1972045259 hasConceptScore W1972045259C2983043445 @default.
- W1972045259 hasConceptScore W1972045259C3018601724 @default.
- W1972045259 hasConceptScore W1972045259C39432304 @default.
- W1972045259 hasConceptScore W1972045259C62649853 @default.