Matches in SemOpenAlex for { <https://semopenalex.org/work/W1972168313> ?p ?o ?g. }
- W1972168313 endingPage "635" @default.
- W1972168313 startingPage "621" @default.
- W1972168313 abstract "In this paper, a new mixture model for image segmentation is presented. We propose a new way to incorporate spatial information between neighboring pixels into the Gaussian mixture model based on Markov random field (MRF). In comparison to other mixture models that are complex and computationally expensive, the proposed method is fast and easy to implement. In mixture models based on MRF, the M-step of the expectation-maximization (EM) algorithm cannot be directly applied to the prior distribution π <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>ij</sub> for maximization of the log-likelihood with respect to the corresponding parameters. Compared with these models, our proposed method directly applies the EM algorithm to optimize the parameters, which makes it much simpler. Experimental results obtained by employing the proposed method on many synthetic and real-world grayscale and colored images demonstrate its robustness, accuracy, and effectiveness, compared with other mixture models." @default.
- W1972168313 created "2016-06-24" @default.
- W1972168313 creator A5036382866 @default.
- W1972168313 creator A5064666806 @default.
- W1972168313 date "2013-04-01" @default.
- W1972168313 modified "2023-10-12" @default.
- W1972168313 title "Fast and Robust Spatially Constrained Gaussian Mixture Model for Image Segmentation" @default.
- W1972168313 cites W1966904454 @default.
- W1972168313 cites W1992147426 @default.
- W1972168313 cites W1999478155 @default.
- W1972168313 cites W2015245929 @default.
- W1972168313 cites W2059471177 @default.
- W1972168313 cites W2067191022 @default.
- W1972168313 cites W2076364662 @default.
- W1972168313 cites W2099915247 @default.
- W1972168313 cites W2108694712 @default.
- W1972168313 cites W2111733996 @default.
- W1972168313 cites W2112157293 @default.
- W1972168313 cites W2114850187 @default.
- W1972168313 cites W2115296699 @default.
- W1972168313 cites W2121927366 @default.
- W1972168313 cites W2121947440 @default.
- W1972168313 cites W2124460974 @default.
- W1972168313 cites W2132106992 @default.
- W1972168313 cites W2132549764 @default.
- W1972168313 cites W2132708350 @default.
- W1972168313 cites W2135705692 @default.
- W1972168313 cites W2136573752 @default.
- W1972168313 cites W2139276606 @default.
- W1972168313 cites W2146037576 @default.
- W1972168313 cites W2159834125 @default.
- W1972168313 cites W2162021123 @default.
- W1972168313 cites W2166329820 @default.
- W1972168313 cites W2170622722 @default.
- W1972168313 cites W2171324559 @default.
- W1972168313 cites W2171765626 @default.
- W1972168313 cites W2488678869 @default.
- W1972168313 cites W4211230164 @default.
- W1972168313 cites W4212863985 @default.
- W1972168313 doi "https://doi.org/10.1109/tcsvt.2012.2211176" @default.
- W1972168313 hasPublicationYear "2013" @default.
- W1972168313 type Work @default.
- W1972168313 sameAs 1972168313 @default.
- W1972168313 citedByCount "137" @default.
- W1972168313 countsByYear W19721683132013 @default.
- W1972168313 countsByYear W19721683132014 @default.
- W1972168313 countsByYear W19721683132015 @default.
- W1972168313 countsByYear W19721683132016 @default.
- W1972168313 countsByYear W19721683132017 @default.
- W1972168313 countsByYear W19721683132018 @default.
- W1972168313 countsByYear W19721683132019 @default.
- W1972168313 countsByYear W19721683132020 @default.
- W1972168313 countsByYear W19721683132021 @default.
- W1972168313 countsByYear W19721683132022 @default.
- W1972168313 countsByYear W19721683132023 @default.
- W1972168313 crossrefType "journal-article" @default.
- W1972168313 hasAuthorship W1972168313A5036382866 @default.
- W1972168313 hasAuthorship W1972168313A5064666806 @default.
- W1972168313 hasConcept C104317684 @default.
- W1972168313 hasConcept C105795698 @default.
- W1972168313 hasConcept C11413529 @default.
- W1972168313 hasConcept C119857082 @default.
- W1972168313 hasConcept C121332964 @default.
- W1972168313 hasConcept C124504099 @default.
- W1972168313 hasConcept C126255220 @default.
- W1972168313 hasConcept C153180895 @default.
- W1972168313 hasConcept C154945302 @default.
- W1972168313 hasConcept C160633673 @default.
- W1972168313 hasConcept C163716315 @default.
- W1972168313 hasConcept C182081679 @default.
- W1972168313 hasConcept C185592680 @default.
- W1972168313 hasConcept C2776330181 @default.
- W1972168313 hasConcept C2778045648 @default.
- W1972168313 hasConcept C33923547 @default.
- W1972168313 hasConcept C41008148 @default.
- W1972168313 hasConcept C49781872 @default.
- W1972168313 hasConcept C55493867 @default.
- W1972168313 hasConcept C61224824 @default.
- W1972168313 hasConcept C62520636 @default.
- W1972168313 hasConcept C63479239 @default.
- W1972168313 hasConcept C78201319 @default.
- W1972168313 hasConcept C89600930 @default.
- W1972168313 hasConcept C98763669 @default.
- W1972168313 hasConceptScore W1972168313C104317684 @default.
- W1972168313 hasConceptScore W1972168313C105795698 @default.
- W1972168313 hasConceptScore W1972168313C11413529 @default.
- W1972168313 hasConceptScore W1972168313C119857082 @default.
- W1972168313 hasConceptScore W1972168313C121332964 @default.
- W1972168313 hasConceptScore W1972168313C124504099 @default.
- W1972168313 hasConceptScore W1972168313C126255220 @default.
- W1972168313 hasConceptScore W1972168313C153180895 @default.
- W1972168313 hasConceptScore W1972168313C154945302 @default.
- W1972168313 hasConceptScore W1972168313C160633673 @default.
- W1972168313 hasConceptScore W1972168313C163716315 @default.
- W1972168313 hasConceptScore W1972168313C182081679 @default.
- W1972168313 hasConceptScore W1972168313C185592680 @default.
- W1972168313 hasConceptScore W1972168313C2776330181 @default.
- W1972168313 hasConceptScore W1972168313C2778045648 @default.