Matches in SemOpenAlex for { <https://semopenalex.org/work/W1972300965> ?p ?o ?g. }
- W1972300965 endingPage "21" @default.
- W1972300965 startingPage "1" @default.
- W1972300965 abstract "Along with increasing popularity of social websites, online users rely more on the trustworthiness information to make decisions, extract and filter information, and tag and build connections with other users. However, such social network data often suffer from severe data sparsity and are not able to provide users with enough information. Therefore, trust prediction has emerged as an important topic in social network research. Traditional approaches are primarily based on exploring trust graph topology itself. However, research in sociology and our life experience suggest that people who are in the same social circle often exhibit similar behaviors and tastes. To take advantage of the ancillary information for trust prediction, the challenge then becomes what to transfer and how to transfer. In this article, we address this problem by aggregating heterogeneous social networks and propose a novel joint social networks mining (JSNM) method. Our new joint learning model explores the user-group-level similarity between correlated graphs and simultaneously learns the individual graph structure; therefore, the shared structures and patterns from multiple social networks can be utilized to enhance the prediction tasks. As a result, we not only improve the trust prediction in the target graph but also facilitate other information retrieval tasks in the auxiliary graphs. To optimize the proposed objective function, we use the alternative technique to break down the objective function into several manageable subproblems. We further introduce the auxiliary function to solve the optimization problems with rigorously proved convergence. The extensive experiments have been conducted on both synthetic and real- world data. All empirical results demonstrate the effectiveness of our method." @default.
- W1972300965 created "2016-06-24" @default.
- W1972300965 creator A5003222421 @default.
- W1972300965 creator A5032673243 @default.
- W1972300965 creator A5060016795 @default.
- W1972300965 creator A5067222034 @default.
- W1972300965 creator A5069858475 @default.
- W1972300965 date "2013-11-01" @default.
- W1972300965 modified "2023-09-30" @default.
- W1972300965 title "Social trust prediction using heterogeneous networks" @default.
- W1972300965 cites W1479807131 @default.
- W1972300965 cites W1632591701 @default.
- W1972300965 cites W1976526581 @default.
- W1972300965 cites W1979584682 @default.
- W1972300965 cites W1988772631 @default.
- W1972300965 cites W2017102965 @default.
- W1972300965 cites W2042281163 @default.
- W1972300965 cites W2043670592 @default.
- W1972300965 cites W2053186076 @default.
- W1972300965 cites W2073415627 @default.
- W1972300965 cites W2085040216 @default.
- W1972300965 cites W2094858374 @default.
- W1972300965 cites W2117420919 @default.
- W1972300965 cites W2117831564 @default.
- W1972300965 cites W2121154640 @default.
- W1972300965 cites W2121947440 @default.
- W1972300965 cites W2124608575 @default.
- W1972300965 cites W2128891547 @default.
- W1972300965 cites W2130354913 @default.
- W1972300965 cites W2132914434 @default.
- W1972300965 cites W2133266261 @default.
- W1972300965 cites W2136486572 @default.
- W1972300965 cites W2144780381 @default.
- W1972300965 cites W2156523427 @default.
- W1972300965 cites W2167686991 @default.
- W1972300965 cites W2168103112 @default.
- W1972300965 cites W2420733993 @default.
- W1972300965 cites W4232980324 @default.
- W1972300965 cites W4250589301 @default.
- W1972300965 doi "https://doi.org/10.1145/2541268.2541270" @default.
- W1972300965 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3983696" @default.
- W1972300965 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24729776" @default.
- W1972300965 hasPublicationYear "2013" @default.
- W1972300965 type Work @default.
- W1972300965 sameAs 1972300965 @default.
- W1972300965 citedByCount "23" @default.
- W1972300965 countsByYear W19723009652015 @default.
- W1972300965 countsByYear W19723009652016 @default.
- W1972300965 countsByYear W19723009652017 @default.
- W1972300965 countsByYear W19723009652018 @default.
- W1972300965 countsByYear W19723009652019 @default.
- W1972300965 countsByYear W19723009652022 @default.
- W1972300965 countsByYear W19723009652023 @default.
- W1972300965 crossrefType "journal-article" @default.
- W1972300965 hasAuthorship W1972300965A5003222421 @default.
- W1972300965 hasAuthorship W1972300965A5032673243 @default.
- W1972300965 hasAuthorship W1972300965A5060016795 @default.
- W1972300965 hasAuthorship W1972300965A5067222034 @default.
- W1972300965 hasAuthorship W1972300965A5069858475 @default.
- W1972300965 hasBestOaLocation W19723009652 @default.
- W1972300965 hasConcept C103278499 @default.
- W1972300965 hasConcept C106131492 @default.
- W1972300965 hasConcept C115961682 @default.
- W1972300965 hasConcept C119857082 @default.
- W1972300965 hasConcept C124101348 @default.
- W1972300965 hasConcept C132525143 @default.
- W1972300965 hasConcept C136764020 @default.
- W1972300965 hasConcept C14036430 @default.
- W1972300965 hasConcept C154945302 @default.
- W1972300965 hasConcept C15744967 @default.
- W1972300965 hasConcept C162324750 @default.
- W1972300965 hasConcept C21569690 @default.
- W1972300965 hasConcept C2522767166 @default.
- W1972300965 hasConcept C2777303404 @default.
- W1972300965 hasConcept C2777522414 @default.
- W1972300965 hasConcept C2780586970 @default.
- W1972300965 hasConcept C31972630 @default.
- W1972300965 hasConcept C41008148 @default.
- W1972300965 hasConcept C4727928 @default.
- W1972300965 hasConcept C50522688 @default.
- W1972300965 hasConcept C518677369 @default.
- W1972300965 hasConcept C557471498 @default.
- W1972300965 hasConcept C77805123 @default.
- W1972300965 hasConcept C78458016 @default.
- W1972300965 hasConcept C80444323 @default.
- W1972300965 hasConcept C86803240 @default.
- W1972300965 hasConceptScore W1972300965C103278499 @default.
- W1972300965 hasConceptScore W1972300965C106131492 @default.
- W1972300965 hasConceptScore W1972300965C115961682 @default.
- W1972300965 hasConceptScore W1972300965C119857082 @default.
- W1972300965 hasConceptScore W1972300965C124101348 @default.
- W1972300965 hasConceptScore W1972300965C132525143 @default.
- W1972300965 hasConceptScore W1972300965C136764020 @default.
- W1972300965 hasConceptScore W1972300965C14036430 @default.
- W1972300965 hasConceptScore W1972300965C154945302 @default.
- W1972300965 hasConceptScore W1972300965C15744967 @default.
- W1972300965 hasConceptScore W1972300965C162324750 @default.
- W1972300965 hasConceptScore W1972300965C21569690 @default.