Matches in SemOpenAlex for { <https://semopenalex.org/work/W1972316072> ?p ?o ?g. }
- W1972316072 endingPage "149" @default.
- W1972316072 startingPage "77" @default.
- W1972316072 abstract "AbstractThe study of open quantum systems – microscopic systems exhibiting quantum coherence that are coupled to their environment – has become increasingly important in the past years, as the ability to control quantum coherence on a single particle level has been developed in a wide variety of physical systems. In quantum optics, the study of open systems goes well beyond understanding the breakdown of quantum coherence. There, the coupling to the environment is sufficiently well understood that it can be manipulated to drive the system into desired quantum states, or to project the system onto known states via feedback in quantum measurements. Many mathematical frameworks have been developed to describe such systems, which for atomic, molecular, and optical (AMO) systems generally provide a very accurate description of the open quantum system on a microscopic level. In recent years, AMO systems including cold atomic and molecular gases and trapped ions have been applied heavily to the study of many-body physics, and it has become important to extend previous understanding of open system dynamics in single- and few-body systems to this many-body context. A key formalism that has already proven very useful in this context is the quantum trajectories technique. This method was developed in quantum optics as a numerical tool for studying dynamics in open quantum systems, and falls within a broader framework of continuous measurement theory as a way to understand the dynamics of large classes of open quantum systems. In this article, we review the progress that has been made in studying open many-body systems in the AMO context, focussing on the application of ideas from quantum optics, and on the implementation and applications of quantum trajectories methods in these systems. Control over dissipative processes promises many further tools to prepare interesting and important states in strongly interacting systems, including the realisation of parameter regimes in quantum simulators that are inaccessible via current techniques.PACS: 03.65.Yz Decoherenceopen systemsquantum statistical methods42.50.-p Quantum optics37.10.-x Atommoleculeand ion cooling methods67.85.-d Ultracold gasestrapped gasesKeywords: open quantum systemsquantum trajectoriesquantum opticstime-dependent dynamicstime-dependent density matrix renormalisation groupdecoherence Notes1. In a many-body context, a “small” quantum system might be relatively large and complex – it should just be very substantially smaller, e.g. in the scale of total energy, or total number of degrees of freedom, when compared with the environment to which it is coupling2. See, e.g. Ref. [Citation202] for a general discussion of random number generators. For typical calculations, only a few tens of thousands of random numbers must be generated, and good quality pseudorandom number generators suffice. See Ref. [Citation203] for a recent discussion of improvements to that are possible using quantum random number generators.3. We can't completely take the limit physically, as we have made important approximations regarding the fact that we consider dynamics over long timescales compared with . However, we can take the limit of vanishing δ t from the point of view of numerical implementations after the other approximations have been implemented. See Appendix A for a more detailed discussion.4. For a more detailed review of these methods, see, e.g. Ref. [Citation226].5. Although atoms consist of protons, neutrons, and electrons, a tightly bound atom at low energy can be assumed to maintain bosonic or fermionic character provided short-distance physics can be eliminated, and the typical separation of atoms is much larger than their size.6. Note that this transfer can also be interpreted as measurement of the position of the atom within the lattice site." @default.
- W1972316072 created "2016-06-24" @default.
- W1972316072 creator A5024577147 @default.
- W1972316072 date "2014-03-04" @default.
- W1972316072 modified "2023-10-13" @default.
- W1972316072 title "Quantum trajectories and open many-body quantum systems" @default.
- W1972316072 cites W148336435 @default.
- W1972316072 cites W1483893079 @default.
- W1972316072 cites W1495589048 @default.
- W1972316072 cites W1500549746 @default.
- W1972316072 cites W1516694005 @default.
- W1972316072 cites W1543854718 @default.
- W1972316072 cites W1550516781 @default.
- W1972316072 cites W1555488444 @default.
- W1972316072 cites W1568637019 @default.
- W1972316072 cites W1575485620 @default.
- W1972316072 cites W1578322733 @default.
- W1972316072 cites W1587686056 @default.
- W1972316072 cites W1606923443 @default.
- W1972316072 cites W1621590642 @default.
- W1972316072 cites W1642381609 @default.
- W1972316072 cites W1655282452 @default.
- W1972316072 cites W1662373048 @default.
- W1972316072 cites W1812942481 @default.
- W1972316072 cites W1820893258 @default.
- W1972316072 cites W1837565614 @default.
- W1972316072 cites W1922629554 @default.
- W1972316072 cites W1963988846 @default.
- W1972316072 cites W1965130025 @default.
- W1972316072 cites W1965378868 @default.
- W1972316072 cites W1966734302 @default.
- W1972316072 cites W1967205858 @default.
- W1972316072 cites W1967788013 @default.
- W1972316072 cites W1970054335 @default.
- W1972316072 cites W1970252426 @default.
- W1972316072 cites W1970556183 @default.
- W1972316072 cites W1970809743 @default.
- W1972316072 cites W1970926967 @default.
- W1972316072 cites W1972445258 @default.
- W1972316072 cites W1972450974 @default.
- W1972316072 cites W1973063342 @default.
- W1972316072 cites W1973073374 @default.
- W1972316072 cites W1973337266 @default.
- W1972316072 cites W1973676398 @default.
- W1972316072 cites W1974890298 @default.
- W1972316072 cites W1975448072 @default.
- W1972316072 cites W1976419875 @default.
- W1972316072 cites W1976692259 @default.
- W1972316072 cites W1977159085 @default.
- W1972316072 cites W1978073628 @default.
- W1972316072 cites W1978607448 @default.
- W1972316072 cites W1978995715 @default.
- W1972316072 cites W1979308046 @default.
- W1972316072 cites W1979700341 @default.
- W1972316072 cites W1979721222 @default.
- W1972316072 cites W1980260522 @default.
- W1972316072 cites W1981089273 @default.
- W1972316072 cites W1981368018 @default.
- W1972316072 cites W1982353990 @default.
- W1972316072 cites W1982598496 @default.
- W1972316072 cites W1983177003 @default.
- W1972316072 cites W1983336715 @default.
- W1972316072 cites W1983573695 @default.
- W1972316072 cites W1983750111 @default.
- W1972316072 cites W1983797531 @default.
- W1972316072 cites W1984487708 @default.
- W1972316072 cites W1985865446 @default.
- W1972316072 cites W1989088029 @default.
- W1972316072 cites W1989180436 @default.
- W1972316072 cites W1989563849 @default.
- W1972316072 cites W1989709650 @default.
- W1972316072 cites W1990079924 @default.
- W1972316072 cites W1990371182 @default.
- W1972316072 cites W1990775743 @default.
- W1972316072 cites W1991050432 @default.
- W1972316072 cites W1991602497 @default.
- W1972316072 cites W1992634891 @default.
- W1972316072 cites W1992807443 @default.
- W1972316072 cites W1992816513 @default.
- W1972316072 cites W1993250735 @default.
- W1972316072 cites W1993717653 @default.
- W1972316072 cites W1994139571 @default.
- W1972316072 cites W1994189077 @default.
- W1972316072 cites W1994432721 @default.
- W1972316072 cites W1994716414 @default.
- W1972316072 cites W1995597252 @default.
- W1972316072 cites W1995672555 @default.
- W1972316072 cites W1995899264 @default.
- W1972316072 cites W1996459947 @default.
- W1972316072 cites W1997438324 @default.
- W1972316072 cites W1997895393 @default.
- W1972316072 cites W1998198964 @default.
- W1972316072 cites W1999404882 @default.
- W1972316072 cites W2000401739 @default.
- W1972316072 cites W2000888785 @default.
- W1972316072 cites W2001688573 @default.
- W1972316072 cites W2002439297 @default.
- W1972316072 cites W2002729739 @default.