Matches in SemOpenAlex for { <https://semopenalex.org/work/W1972370545> ?p ?o ?g. }
- W1972370545 endingPage "4867" @default.
- W1972370545 startingPage "4843" @default.
- W1972370545 abstract "Cooling and thickening of lithospheric plates with age and subduction result in large-scale horizontal density contrasts tending to drive plate motions and mantle flow. We quantify the driving forces associated with these density contrasts to determine if they can drive the observed plate motions. First, two-dimensional models are computed to evaluate the effects of assumed rheologies and boundary conditions. We are unable to obtain platelike behavior in viscous models with traction-free boundary conditions. The piecewise uniform velocities distinctive of plate motion can be imposed as boundary conditions and the dynamic consistency of the models evaluated by determining if the net force on each vanishes. If the lithosphere has a Newtonian viscous rheology, the net force on any plate is a strong function of the effective grid spacing used, leading to ambiguities in interpretation. Incorporating a rigid-plastic lithosphere, which fails at a critical yield stress, into the otherwise viscous model removes these ambiguities. The model is extended to the actual three-dimensional (spherical) plate geometry. The observed velocities of rigid-plastic plates are matched to the solution of the viscous Stokes equation at the lithosphere-asthenosphere boundary. Body forces from the seismically observed slabs, from the thickening of the lithosphere obtained from the actual lithospheric ages, and from the differences in structure between continents and oceans are included. Interior density contrasts such as those resulting from upwellings from a hot bottom boundary layer are assumed to occur on a scale small compared to plate dimensions and are not included. The driving forces from the density contrasts within the plates are calculated and compared to resisting forces resulting from viscous drag computed from the three-dimensional global return flow and resistance to deformation at converging boundaries; the rms residual torque is ∼30% of the driving torque. The density contrasts within the plates themselves can reasonably account for plate motions. Body forces from convection in the interior may provide only a small net force on the plates. At converging boundaries the lithosphere has a yield stress of ∼100 bars; drag at the base of the plates is ∼5 bars and resists plate motion. The net driving forces from subducting slabs and collisional resistance are localized and approximately balance. Driving forces from lithospheric thickening are distributed over the areas of the plates, as is viscous drag. The approximate balance of these two forces predicts plate velocities uncorrelated with plate area, as observed. The model represents a specific case of boundary layer convection; the dynamical results are consistent with either upper mantle or mantle-wide convection." @default.
- W1972370545 created "2016-06-24" @default.
- W1972370545 creator A5026126663 @default.
- W1972370545 creator A5034443346 @default.
- W1972370545 date "1981-06-10" @default.
- W1972370545 modified "2023-10-03" @default.
- W1972370545 title "A simple global model of plate dynamics and mantle convection" @default.
- W1972370545 cites W1581591426 @default.
- W1972370545 cites W1969397327 @default.
- W1972370545 cites W1978378250 @default.
- W1972370545 cites W1983297201 @default.
- W1972370545 cites W1983508465 @default.
- W1972370545 cites W1991676502 @default.
- W1972370545 cites W1992357382 @default.
- W1972370545 cites W1995663448 @default.
- W1972370545 cites W1998445318 @default.
- W1972370545 cites W1998790849 @default.
- W1972370545 cites W2002418118 @default.
- W1972370545 cites W2005955351 @default.
- W1972370545 cites W2006916231 @default.
- W1972370545 cites W2008684577 @default.
- W1972370545 cites W2009824639 @default.
- W1972370545 cites W2009930154 @default.
- W1972370545 cites W2011893217 @default.
- W1972370545 cites W2015667927 @default.
- W1972370545 cites W2025244602 @default.
- W1972370545 cites W2025824759 @default.
- W1972370545 cites W2027184838 @default.
- W1972370545 cites W2027288914 @default.
- W1972370545 cites W2027765443 @default.
- W1972370545 cites W2030590369 @default.
- W1972370545 cites W2039492151 @default.
- W1972370545 cites W2039675144 @default.
- W1972370545 cites W2043676912 @default.
- W1972370545 cites W2044149101 @default.
- W1972370545 cites W2045948811 @default.
- W1972370545 cites W2047259056 @default.
- W1972370545 cites W2049126610 @default.
- W1972370545 cites W2050299754 @default.
- W1972370545 cites W2051965379 @default.
- W1972370545 cites W2052168245 @default.
- W1972370545 cites W2055236946 @default.
- W1972370545 cites W2056259282 @default.
- W1972370545 cites W2061631604 @default.
- W1972370545 cites W2062438545 @default.
- W1972370545 cites W2066711037 @default.
- W1972370545 cites W2069577732 @default.
- W1972370545 cites W2072440261 @default.
- W1972370545 cites W2074105632 @default.
- W1972370545 cites W2076314280 @default.
- W1972370545 cites W2077925702 @default.
- W1972370545 cites W2079496077 @default.
- W1972370545 cites W2085845463 @default.
- W1972370545 cites W2086685148 @default.
- W1972370545 cites W2089495890 @default.
- W1972370545 cites W2091811933 @default.
- W1972370545 cites W2094231314 @default.
- W1972370545 cites W2098287721 @default.
- W1972370545 cites W2098866791 @default.
- W1972370545 cites W2102234201 @default.
- W1972370545 cites W2104578470 @default.
- W1972370545 cites W2105511586 @default.
- W1972370545 cites W2108053734 @default.
- W1972370545 cites W2115914348 @default.
- W1972370545 cites W2115985120 @default.
- W1972370545 cites W2117025716 @default.
- W1972370545 cites W2122866287 @default.
- W1972370545 cites W2129935958 @default.
- W1972370545 cites W2130714009 @default.
- W1972370545 cites W2131715459 @default.
- W1972370545 cites W2137294157 @default.
- W1972370545 cites W2138749422 @default.
- W1972370545 cites W2139668189 @default.
- W1972370545 cites W2139960250 @default.
- W1972370545 cites W2140425919 @default.
- W1972370545 cites W2148940799 @default.
- W1972370545 cites W2151136129 @default.
- W1972370545 cites W2155223823 @default.
- W1972370545 cites W2162691838 @default.
- W1972370545 cites W2167339730 @default.
- W1972370545 doi "https://doi.org/10.1029/jb086ib06p04843" @default.
- W1972370545 hasPublicationYear "1981" @default.
- W1972370545 type Work @default.
- W1972370545 sameAs 1972370545 @default.
- W1972370545 citedByCount "555" @default.
- W1972370545 countsByYear W19723705452012 @default.
- W1972370545 countsByYear W19723705452013 @default.
- W1972370545 countsByYear W19723705452014 @default.
- W1972370545 countsByYear W19723705452015 @default.
- W1972370545 countsByYear W19723705452016 @default.
- W1972370545 countsByYear W19723705452017 @default.
- W1972370545 countsByYear W19723705452018 @default.
- W1972370545 countsByYear W19723705452019 @default.
- W1972370545 countsByYear W19723705452020 @default.
- W1972370545 countsByYear W19723705452021 @default.
- W1972370545 countsByYear W19723705452022 @default.
- W1972370545 countsByYear W19723705452023 @default.
- W1972370545 crossrefType "journal-article" @default.