Matches in SemOpenAlex for { <https://semopenalex.org/work/W1972473485> ?p ?o ?g. }
- W1972473485 endingPage "185" @default.
- W1972473485 startingPage "176" @default.
- W1972473485 abstract "Arid and semi-arid ecosystems represent a dynamic but poorly understood component of global carbon, water, and energy cycles. We studied a semi-arid mountain big sagebrush (Artemisia tridentata var. vaseyana; hereafter, “sagebrush”) dominated ecosystem to quantify the (1) relative control of surface (0–15 cm) versus deep (15–45 cm) soil moisture on leaf transpiration (EL) and stomatal conductance (gS); (2) response of EL and gS to light and soil and atmospheric drought; and (3) physiological mechanisms underlying these responses. The physiological mechanisms were tested using a simple plant hydraulic model for gS based on homeostatic regulation of minimum leaf water potential (ΨLmin) that was originally developed for trees. Our results showed that a combination of atmospheric and surface soil drought controlled EL, whereas gS was mainly driven by atmospheric drought. Sagebrush displayed greater reference conductance [gS@1 kPa vapor pressure deficit (D), gSR] and greater sensitivity (−m) of gS to D than mesic trees, reflecting the high average light intensity within the shrub canopy. The slope of −m/gSR was similar to mesic trees (∼0.6), indicating an isohydric regulation of ΨLmin, but different than previously published values for semi-arid shrubs (∼0.4). Isohydric behavior of sagebrush indicates that well-known forest ecosystem models with greater gSR and −m can be used for modeling water, energy and carbon cycles from sagebrush and similar ecosystems." @default.
- W1972473485 created "2016-06-24" @default.
- W1972473485 creator A5013900104 @default.
- W1972473485 creator A5033532264 @default.
- W1972473485 creator A5084996894 @default.
- W1972473485 date "2012-09-01" @default.
- W1972473485 modified "2023-10-11" @default.
- W1972473485 title "Sap flux-scaled transpiration and stomatal conductance response to soil and atmospheric drought in a semi-arid sagebrush ecosystem" @default.
- W1972473485 cites W1209269186 @default.
- W1972473485 cites W1756134643 @default.
- W1972473485 cites W1927781754 @default.
- W1972473485 cites W1964655373 @default.
- W1972473485 cites W1968140748 @default.
- W1972473485 cites W1972776745 @default.
- W1972473485 cites W1973887926 @default.
- W1972473485 cites W1976451484 @default.
- W1972473485 cites W1978815659 @default.
- W1972473485 cites W1978838242 @default.
- W1972473485 cites W1985915448 @default.
- W1972473485 cites W1992441102 @default.
- W1972473485 cites W1993525684 @default.
- W1972473485 cites W1995563871 @default.
- W1972473485 cites W1996993396 @default.
- W1972473485 cites W1999507140 @default.
- W1972473485 cites W2000071889 @default.
- W1972473485 cites W2005710986 @default.
- W1972473485 cites W2016961712 @default.
- W1972473485 cites W2021305850 @default.
- W1972473485 cites W2024864953 @default.
- W1972473485 cites W2025163636 @default.
- W1972473485 cites W2026460846 @default.
- W1972473485 cites W2028833815 @default.
- W1972473485 cites W2031457438 @default.
- W1972473485 cites W2057449189 @default.
- W1972473485 cites W2067540986 @default.
- W1972473485 cites W2068957849 @default.
- W1972473485 cites W2069605192 @default.
- W1972473485 cites W2069931435 @default.
- W1972473485 cites W2070274631 @default.
- W1972473485 cites W2075791489 @default.
- W1972473485 cites W2082595942 @default.
- W1972473485 cites W2087696357 @default.
- W1972473485 cites W2093023540 @default.
- W1972473485 cites W2096027310 @default.
- W1972473485 cites W2096505086 @default.
- W1972473485 cites W2097693422 @default.
- W1972473485 cites W2099970940 @default.
- W1972473485 cites W2101836973 @default.
- W1972473485 cites W2103213004 @default.
- W1972473485 cites W2104451846 @default.
- W1972473485 cites W2106290374 @default.
- W1972473485 cites W2106708698 @default.
- W1972473485 cites W2108858499 @default.
- W1972473485 cites W2112278160 @default.
- W1972473485 cites W2112926110 @default.
- W1972473485 cites W2113891847 @default.
- W1972473485 cites W2116176686 @default.
- W1972473485 cites W2124200526 @default.
- W1972473485 cites W2127465662 @default.
- W1972473485 cites W2132227142 @default.
- W1972473485 cites W2133590570 @default.
- W1972473485 cites W2133934206 @default.
- W1972473485 cites W2134333960 @default.
- W1972473485 cites W2137068929 @default.
- W1972473485 cites W2137957460 @default.
- W1972473485 cites W2138108544 @default.
- W1972473485 cites W2139067891 @default.
- W1972473485 cites W2140441157 @default.
- W1972473485 cites W2143859790 @default.
- W1972473485 cites W2145784218 @default.
- W1972473485 cites W2147260291 @default.
- W1972473485 cites W2150866414 @default.
- W1972473485 cites W2153427373 @default.
- W1972473485 cites W2157144502 @default.
- W1972473485 cites W2157949340 @default.
- W1972473485 cites W2158569120 @default.
- W1972473485 cites W2163605793 @default.
- W1972473485 cites W2163729722 @default.
- W1972473485 cites W2164630180 @default.
- W1972473485 cites W2165113845 @default.
- W1972473485 cites W2165361640 @default.
- W1972473485 cites W2166356512 @default.
- W1972473485 cites W2169230910 @default.
- W1972473485 cites W2172202055 @default.
- W1972473485 cites W2312527179 @default.
- W1972473485 cites W2327609089 @default.
- W1972473485 cites W2329329982 @default.
- W1972473485 doi "https://doi.org/10.1016/j.jhydrol.2012.07.008" @default.
- W1972473485 hasPublicationYear "2012" @default.
- W1972473485 type Work @default.
- W1972473485 sameAs 1972473485 @default.
- W1972473485 citedByCount "87" @default.
- W1972473485 countsByYear W19724734852013 @default.
- W1972473485 countsByYear W19724734852014 @default.
- W1972473485 countsByYear W19724734852015 @default.
- W1972473485 countsByYear W19724734852016 @default.
- W1972473485 countsByYear W19724734852017 @default.
- W1972473485 countsByYear W19724734852018 @default.