Matches in SemOpenAlex for { <https://semopenalex.org/work/W1972508834> ?p ?o ?g. }
- W1972508834 endingPage "21" @default.
- W1972508834 startingPage "1" @default.
- W1972508834 abstract "Active learning is a machine learning technique that selects the most informative samples for labeling and uses them as training data. It has been widely explored in multimedia research community for its capability of reducing human annotation effort. In this article, we provide a survey on the efforts of leveraging active learning in multimedia annotation and retrieval. We mainly focus on two application domains: image/video annotation and content-based image retrieval. We first briefly introduce the principle of active learning and then we analyze the sample selection criteria. We categorize the existing sample selection strategies used in multimedia annotation and retrieval into five criteria: risk reduction , uncertainty , diversity , density and relevance . We then introduce several classification models used in active learning-based multimedia annotation and retrieval, including semi-supervised learning, multilabel learning and multiple instance learning. We also provide a discussion on several future trends in this research direction. In particular, we discuss cost analysis of human annotation and large-scale interactive multimedia annotation." @default.
- W1972508834 created "2016-06-24" @default.
- W1972508834 creator A5024965898 @default.
- W1972508834 creator A5036726873 @default.
- W1972508834 date "2011-02-01" @default.
- W1972508834 modified "2023-10-17" @default.
- W1972508834 title "Active learning in multimedia annotation and retrieval" @default.
- W1972508834 cites W1479807131 @default.
- W1972508834 cites W1528361845 @default.
- W1972508834 cites W1533011499 @default.
- W1972508834 cites W1739260168 @default.
- W1972508834 cites W1773652845 @default.
- W1972508834 cites W1978633512 @default.
- W1972508834 cites W1981367467 @default.
- W1972508834 cites W2009207944 @default.
- W1972508834 cites W2024368999 @default.
- W1972508834 cites W2025363509 @default.
- W1972508834 cites W2026693436 @default.
- W1972508834 cites W2048679005 @default.
- W1972508834 cites W2078528959 @default.
- W1972508834 cites W2080021732 @default.
- W1972508834 cites W2080942732 @default.
- W1972508834 cites W2082453965 @default.
- W1972508834 cites W2083097051 @default.
- W1972508834 cites W2087544865 @default.
- W1972508834 cites W2090879738 @default.
- W1972508834 cites W2101498401 @default.
- W1972508834 cites W2104848109 @default.
- W1972508834 cites W2110119381 @default.
- W1972508834 cites W2111331420 @default.
- W1972508834 cites W2116952064 @default.
- W1972508834 cites W2118020555 @default.
- W1972508834 cites W2118168768 @default.
- W1972508834 cites W2119970716 @default.
- W1972508834 cites W2125617179 @default.
- W1972508834 cites W2129955511 @default.
- W1972508834 cites W2130660124 @default.
- W1972508834 cites W2136636278 @default.
- W1972508834 cites W2137184539 @default.
- W1972508834 cites W2138079527 @default.
- W1972508834 cites W2139709458 @default.
- W1972508834 cites W2141282920 @default.
- W1972508834 cites W2142126424 @default.
- W1972508834 cites W2143854982 @default.
- W1972508834 cites W2151023586 @default.
- W1972508834 cites W2153356636 @default.
- W1972508834 cites W2153531403 @default.
- W1972508834 cites W2155906060 @default.
- W1972508834 cites W2162990951 @default.
- W1972508834 cites W2164193311 @default.
- W1972508834 cites W2165966284 @default.
- W1972508834 cites W2168661348 @default.
- W1972508834 cites W4302355907 @default.
- W1972508834 doi "https://doi.org/10.1145/1899412.1899414" @default.
- W1972508834 hasPublicationYear "2011" @default.
- W1972508834 type Work @default.
- W1972508834 sameAs 1972508834 @default.
- W1972508834 citedByCount "188" @default.
- W1972508834 countsByYear W19725088342012 @default.
- W1972508834 countsByYear W19725088342013 @default.
- W1972508834 countsByYear W19725088342014 @default.
- W1972508834 countsByYear W19725088342015 @default.
- W1972508834 countsByYear W19725088342016 @default.
- W1972508834 countsByYear W19725088342017 @default.
- W1972508834 countsByYear W19725088342018 @default.
- W1972508834 countsByYear W19725088342019 @default.
- W1972508834 countsByYear W19725088342020 @default.
- W1972508834 countsByYear W19725088342021 @default.
- W1972508834 countsByYear W19725088342022 @default.
- W1972508834 countsByYear W19725088342023 @default.
- W1972508834 crossrefType "journal-article" @default.
- W1972508834 hasAuthorship W1972508834A5024965898 @default.
- W1972508834 hasAuthorship W1972508834A5036726873 @default.
- W1972508834 hasConcept C115961682 @default.
- W1972508834 hasConcept C119857082 @default.
- W1972508834 hasConcept C120665830 @default.
- W1972508834 hasConcept C121332964 @default.
- W1972508834 hasConcept C154945302 @default.
- W1972508834 hasConcept C158154518 @default.
- W1972508834 hasConcept C1667742 @default.
- W1972508834 hasConcept C17744445 @default.
- W1972508834 hasConcept C192209626 @default.
- W1972508834 hasConcept C199539241 @default.
- W1972508834 hasConcept C199579030 @default.
- W1972508834 hasConcept C23123220 @default.
- W1972508834 hasConcept C2776321320 @default.
- W1972508834 hasConcept C2779532271 @default.
- W1972508834 hasConcept C41008148 @default.
- W1972508834 hasConcept C49774154 @default.
- W1972508834 hasConcept C77967617 @default.
- W1972508834 hasConcept C81917197 @default.
- W1972508834 hasConcept C94124525 @default.
- W1972508834 hasConceptScore W1972508834C115961682 @default.
- W1972508834 hasConceptScore W1972508834C119857082 @default.
- W1972508834 hasConceptScore W1972508834C120665830 @default.
- W1972508834 hasConceptScore W1972508834C121332964 @default.
- W1972508834 hasConceptScore W1972508834C154945302 @default.
- W1972508834 hasConceptScore W1972508834C158154518 @default.