Matches in SemOpenAlex for { <https://semopenalex.org/work/W1972508963> ?p ?o ?g. }
- W1972508963 endingPage "117" @default.
- W1972508963 startingPage "110" @default.
- W1972508963 abstract "Multivariate analysis on spectroscopic 1H NMR data is well established in metabolomics and other fields where the composition of complex samples is studied. However, biomarker identification can be hampered by overlapping resonances. 2D NMR data provides a more detailed “fingerprint” of the chemical structure and composition of the sample with greatly improved spectral resolution compared to 1H NMR data. In this report, we demonstrate a procedure for the construction of multivariate models based on frequency domain 2D NMR data where the loadings can be visualized as highly informative 2D loading spectra. This method is based on the analysis of raw spectral data without any need for peak picking or integration prior to analysis. Spectral features such as line widths and peak positions are thus retained. Hence, the loadings can be visualized and interpreted on a molecular level as pseudo 2D spectra in order to identify potential biomarkers. To demonstrate this strategy we have analyzed HSQC spectra acquired from populus phloem plant extracts originating from a set of designed experiments with OPLS regression." @default.
- W1972508963 created "2016-06-24" @default.
- W1972508963 creator A5002039438 @default.
- W1972508963 creator A5044647586 @default.
- W1972508963 creator A5067524977 @default.
- W1972508963 creator A5076814500 @default.
- W1972508963 date "2008-07-01" @default.
- W1972508963 modified "2023-10-01" @default.
- W1972508963 title "Visualization and interpretation of OPLS models based on 2D NMR data" @default.
- W1972508963 cites W1598721326 @default.
- W1972508963 cites W1797956629 @default.
- W1972508963 cites W1967831846 @default.
- W1972508963 cites W1973253257 @default.
- W1972508963 cites W1988837170 @default.
- W1972508963 cites W2003414488 @default.
- W1972508963 cites W2010528272 @default.
- W1972508963 cites W2013607204 @default.
- W1972508963 cites W2015912923 @default.
- W1972508963 cites W2016754112 @default.
- W1972508963 cites W2017932539 @default.
- W1972508963 cites W2023501320 @default.
- W1972508963 cites W2042810309 @default.
- W1972508963 cites W2048652600 @default.
- W1972508963 cites W2057299232 @default.
- W1972508963 cites W2068227670 @default.
- W1972508963 cites W2069881836 @default.
- W1972508963 cites W2073039202 @default.
- W1972508963 cites W2089996359 @default.
- W1972508963 cites W2094502729 @default.
- W1972508963 cites W2103731213 @default.
- W1972508963 cites W2107568445 @default.
- W1972508963 cites W2108488321 @default.
- W1972508963 cites W2114390083 @default.
- W1972508963 cites W2119741678 @default.
- W1972508963 cites W2129674765 @default.
- W1972508963 cites W2130382164 @default.
- W1972508963 cites W2133826923 @default.
- W1972508963 cites W2166192671 @default.
- W1972508963 cites W2177169206 @default.
- W1972508963 cites W4249164705 @default.
- W1972508963 cites W4253670719 @default.
- W1972508963 cites W64501224 @default.
- W1972508963 doi "https://doi.org/10.1016/j.chemolab.2008.01.003" @default.
- W1972508963 hasPublicationYear "2008" @default.
- W1972508963 type Work @default.
- W1972508963 sameAs 1972508963 @default.
- W1972508963 citedByCount "33" @default.
- W1972508963 countsByYear W19725089632012 @default.
- W1972508963 countsByYear W19725089632013 @default.
- W1972508963 countsByYear W19725089632014 @default.
- W1972508963 countsByYear W19725089632015 @default.
- W1972508963 countsByYear W19725089632017 @default.
- W1972508963 countsByYear W19725089632018 @default.
- W1972508963 countsByYear W19725089632019 @default.
- W1972508963 countsByYear W19725089632020 @default.
- W1972508963 countsByYear W19725089632021 @default.
- W1972508963 countsByYear W19725089632022 @default.
- W1972508963 countsByYear W19725089632023 @default.
- W1972508963 crossrefType "journal-article" @default.
- W1972508963 hasAuthorship W1972508963A5002039438 @default.
- W1972508963 hasAuthorship W1972508963A5044647586 @default.
- W1972508963 hasAuthorship W1972508963A5067524977 @default.
- W1972508963 hasAuthorship W1972508963A5076814500 @default.
- W1972508963 hasConcept C103319777 @default.
- W1972508963 hasConcept C113196181 @default.
- W1972508963 hasConcept C119049451 @default.
- W1972508963 hasConcept C119857082 @default.
- W1972508963 hasConcept C124101348 @default.
- W1972508963 hasConcept C147597530 @default.
- W1972508963 hasConcept C151304367 @default.
- W1972508963 hasConcept C153180895 @default.
- W1972508963 hasConcept C154945302 @default.
- W1972508963 hasConcept C161584116 @default.
- W1972508963 hasConcept C178790620 @default.
- W1972508963 hasConcept C185592680 @default.
- W1972508963 hasConcept C186060115 @default.
- W1972508963 hasConcept C193125475 @default.
- W1972508963 hasConcept C36464697 @default.
- W1972508963 hasConcept C38660458 @default.
- W1972508963 hasConcept C41008148 @default.
- W1972508963 hasConcept C43617362 @default.
- W1972508963 hasConcept C58489278 @default.
- W1972508963 hasConcept C59593255 @default.
- W1972508963 hasConcept C66974803 @default.
- W1972508963 hasConcept C71240020 @default.
- W1972508963 hasConcept C86803240 @default.
- W1972508963 hasConceptScore W1972508963C103319777 @default.
- W1972508963 hasConceptScore W1972508963C113196181 @default.
- W1972508963 hasConceptScore W1972508963C119049451 @default.
- W1972508963 hasConceptScore W1972508963C119857082 @default.
- W1972508963 hasConceptScore W1972508963C124101348 @default.
- W1972508963 hasConceptScore W1972508963C147597530 @default.
- W1972508963 hasConceptScore W1972508963C151304367 @default.
- W1972508963 hasConceptScore W1972508963C153180895 @default.
- W1972508963 hasConceptScore W1972508963C154945302 @default.
- W1972508963 hasConceptScore W1972508963C161584116 @default.
- W1972508963 hasConceptScore W1972508963C178790620 @default.
- W1972508963 hasConceptScore W1972508963C185592680 @default.