Matches in SemOpenAlex for { <https://semopenalex.org/work/W1972598928> ?p ?o ?g. }
- W1972598928 abstract "[1] Submicron particles collected on Teflon filters aboard the R/V Ronald Brown during the Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS) 2006 in and around the port of Houston, Texas, were measured by Fourier transform infrared (FTIR) and X-ray fluorescence for organic functional groups and elemental composition. Organic mass (OM) concentrations (1–25 μg m−3) for ambient particle samples measured by FTIR showed good agreement with measurements made with an aerosol mass spectrometer. The fractions of organic mass identified as alkane and carboxylic acid groups were 47% and 32%, respectively. Three different types of air masses were identified on the basis of the air mass origin and the radon concentration, with significantly higher carboxylic acid group mass fractions in air masses from the north (35%) than the south (29%) or Gulf of Mexico (26%). Positive matrix factorization analysis attributed carboxylic acid fractions of 30–35% to factors with mild or strong correlations (r > 0.5) to elemental signatures of oil combustion and 9–24% to wood smoke, indicating that part of the carboxylic acid fraction of OM was formed by the same sources that controlled the metal emissions, namely the oil and wood combustion activities. The implication is that a substantial part of the measured carboxylic acid contribution was formed independently of traditionally “secondary” processes, which would be affected by atmospheric (both photochemical and meteorological) conditions and other emission sources. The carboxylic acid group fractions in the Gulf of Mexico and south air masses (GAM and SAM, respectively) were largely oil combustion emissions from ships as well as background marine sources, with only limited recent land influences (based on radon concentrations). Alcohol groups accounted for 14% of OM (mostly associated with oil combustion emissions and background sources), and amine groups accounted for 4% of OM in all air masses. Organosulfate groups were found in GAM and SAM, accounting for 1% and 3% of OM, respectively. Two thirds of the OM and oxygen-to-carbon (O/C) measured could be attributed to oil and wood combustion sources on the basis of mild or strong correlations to coemitted, nonvolatile trace metals, with the remaining one third being associated with atmospherically processed organic aerosol. The cloud condensation nuclei (CCN) fraction (normalized by total condensation nuclei) had weak correlations to the alcohol and amine group fractions and mild correlation with O/C, also varying inversely with alkane group fraction. The chemical components that influenced f(RH) were sulfate, organic, and nitrate fraction, but this contrast is consistent with the size-distribution dependence of CCN counters and nephelometers." @default.
- W1972598928 created "2016-06-24" @default.
- W1972598928 creator A5010059066 @default.
- W1972598928 creator A5019213085 @default.
- W1972598928 creator A5059052085 @default.
- W1972598928 creator A5060370307 @default.
- W1972598928 creator A5070023184 @default.
- W1972598928 creator A5074963581 @default.
- W1972598928 creator A5083556323 @default.
- W1972598928 date "2009-04-04" @default.
- W1972598928 modified "2023-10-17" @default.
- W1972598928 title "Oxygenated fraction and mass of organic aerosol from direct emission and atmospheric processing measured on the R/V<i>Ronald Brown</i>during TEXAQS/GoMACCS 2006" @default.
- W1972598928 cites W1561878391 @default.
- W1972598928 cites W1982056270 @default.
- W1972598928 cites W1988723669 @default.
- W1972598928 cites W1988963778 @default.
- W1972598928 cites W1994448792 @default.
- W1972598928 cites W1997175293 @default.
- W1972598928 cites W2000593148 @default.
- W1972598928 cites W2005973898 @default.
- W1972598928 cites W2007367439 @default.
- W1972598928 cites W2012405438 @default.
- W1972598928 cites W2016381774 @default.
- W1972598928 cites W2021040474 @default.
- W1972598928 cites W2022549417 @default.
- W1972598928 cites W2024780100 @default.
- W1972598928 cites W2027699643 @default.
- W1972598928 cites W2034636109 @default.
- W1972598928 cites W2036736187 @default.
- W1972598928 cites W2037956688 @default.
- W1972598928 cites W2052961453 @default.
- W1972598928 cites W2059279810 @default.
- W1972598928 cites W2059745395 @default.
- W1972598928 cites W2066657257 @default.
- W1972598928 cites W2068048178 @default.
- W1972598928 cites W2069383075 @default.
- W1972598928 cites W2074863041 @default.
- W1972598928 cites W2087478412 @default.
- W1972598928 cites W2092448444 @default.
- W1972598928 cites W2101471238 @default.
- W1972598928 cites W2106585632 @default.
- W1972598928 cites W2108445582 @default.
- W1972598928 cites W2117610650 @default.
- W1972598928 cites W2122315569 @default.
- W1972598928 cites W2124968381 @default.
- W1972598928 cites W2127510753 @default.
- W1972598928 cites W2129425063 @default.
- W1972598928 cites W2134741913 @default.
- W1972598928 cites W2136085627 @default.
- W1972598928 cites W2136092558 @default.
- W1972598928 cites W2141195837 @default.
- W1972598928 cites W2141926856 @default.
- W1972598928 cites W2149597375 @default.
- W1972598928 cites W2152418610 @default.
- W1972598928 cites W2158194440 @default.
- W1972598928 cites W2161922980 @default.
- W1972598928 cites W2162912069 @default.
- W1972598928 cites W2164840653 @default.
- W1972598928 cites W2171183807 @default.
- W1972598928 cites W2291431326 @default.
- W1972598928 cites W2909955070 @default.
- W1972598928 cites W4231062426 @default.
- W1972598928 cites W4234003422 @default.
- W1972598928 cites W4251623560 @default.
- W1972598928 doi "https://doi.org/10.1029/2008jd011275" @default.
- W1972598928 hasPublicationYear "2009" @default.
- W1972598928 type Work @default.
- W1972598928 sameAs 1972598928 @default.
- W1972598928 citedByCount "135" @default.
- W1972598928 countsByYear W19725989282012 @default.
- W1972598928 countsByYear W19725989282013 @default.
- W1972598928 countsByYear W19725989282014 @default.
- W1972598928 countsByYear W19725989282015 @default.
- W1972598928 countsByYear W19725989282016 @default.
- W1972598928 countsByYear W19725989282017 @default.
- W1972598928 countsByYear W19725989282018 @default.
- W1972598928 countsByYear W19725989282019 @default.
- W1972598928 countsByYear W19725989282020 @default.
- W1972598928 countsByYear W19725989282021 @default.
- W1972598928 countsByYear W19725989282022 @default.
- W1972598928 countsByYear W19725989282023 @default.
- W1972598928 crossrefType "journal-article" @default.
- W1972598928 hasAuthorship W1972598928A5010059066 @default.
- W1972598928 hasAuthorship W1972598928A5019213085 @default.
- W1972598928 hasAuthorship W1972598928A5059052085 @default.
- W1972598928 hasAuthorship W1972598928A5060370307 @default.
- W1972598928 hasAuthorship W1972598928A5070023184 @default.
- W1972598928 hasAuthorship W1972598928A5074963581 @default.
- W1972598928 hasAuthorship W1972598928A5083556323 @default.
- W1972598928 hasBestOaLocation W19725989281 @default.
- W1972598928 hasConcept C105923489 @default.
- W1972598928 hasConcept C107872376 @default.
- W1972598928 hasConcept C111603439 @default.
- W1972598928 hasConcept C113196181 @default.
- W1972598928 hasConcept C116628846 @default.
- W1972598928 hasConcept C121332964 @default.
- W1972598928 hasConcept C126857682 @default.
- W1972598928 hasConcept C127413603 @default.
- W1972598928 hasConcept C147789679 @default.
- W1972598928 hasConcept C149629883 @default.