Matches in SemOpenAlex for { <https://semopenalex.org/work/W1972643286> ?p ?o ?g. }
- W1972643286 endingPage "335" @default.
- W1972643286 startingPage "331" @default.
- W1972643286 abstract "The diffraction of electrons through a nanoscale hologram that imprints a certain phase modulation on the electrons’ wavefunction produces a non-spreading electron Airy beam that follows a parabolic trajectory and can reconstruct its original shape after passing an obstacle. Light, as is widely known, travels in straight lines. Yet a few years ago it was shown that specially tailored light beams can follow a curved trajectory, without spreading. Such beams follow a waveform known from quantum mechanics, called the Airy function, a concept originally developed by the astronomer Sir George Biddell Airy in work on the trajectories of light in rainbows. Now, with the demonstration of Airy beams consisting of free electrons, new possibilities for manipulating electrons are in prospect. Airy electron beam arcs were generated by the diffraction of electrons through a nanoscale hologram, which imprints a specific phase modulation on the electrons' wavefunction. These beams can bend in space without any external force, stay localized over distances of up to 100 metres and self-heal after passing an obstacle. Possible applications include use in high-performance electron microscopes and as a basis for a new type of electron interferometer. Within the framework of quantum mechanics, a unique particle wave packet exists1 in the form of the Airy function2,3. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton’s laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized4 in the optical domain; later it was generalized to an orthogonal and complete family of beams5 that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories6. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram7,8,9, which imprinted on the electrons’ wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals10, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes5 or trajectories6." @default.
- W1972643286 created "2016-06-24" @default.
- W1972643286 creator A5044681717 @default.
- W1972643286 creator A5055141922 @default.
- W1972643286 creator A5072053758 @default.
- W1972643286 creator A5078021876 @default.
- W1972643286 creator A5084075779 @default.
- W1972643286 date "2013-02-01" @default.
- W1972643286 modified "2023-10-16" @default.
- W1972643286 title "Generation of electron Airy beams" @default.
- W1972643286 cites W1982665337 @default.
- W1972643286 cites W1983339621 @default.
- W1972643286 cites W1994395146 @default.
- W1972643286 cites W1994554237 @default.
- W1972643286 cites W2006354005 @default.
- W1972643286 cites W2011890678 @default.
- W1972643286 cites W2022071597 @default.
- W1972643286 cites W2023609339 @default.
- W1972643286 cites W2027196302 @default.
- W1972643286 cites W2032171599 @default.
- W1972643286 cites W2040479175 @default.
- W1972643286 cites W2043654160 @default.
- W1972643286 cites W2045532073 @default.
- W1972643286 cites W2054322765 @default.
- W1972643286 cites W2056921062 @default.
- W1972643286 cites W2066858417 @default.
- W1972643286 cites W2091761640 @default.
- W1972643286 cites W2107452313 @default.
- W1972643286 cites W2112148651 @default.
- W1972643286 cites W2127025017 @default.
- W1972643286 cites W2140342770 @default.
- W1972643286 cites W2151623747 @default.
- W1972643286 cites W2159056880 @default.
- W1972643286 cites W2326518493 @default.
- W1972643286 cites W2989796135 @default.
- W1972643286 doi "https://doi.org/10.1038/nature11840" @default.
- W1972643286 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23426323" @default.
- W1972643286 hasPublicationYear "2013" @default.
- W1972643286 type Work @default.
- W1972643286 sameAs 1972643286 @default.
- W1972643286 citedByCount "358" @default.
- W1972643286 countsByYear W19726432862013 @default.
- W1972643286 countsByYear W19726432862014 @default.
- W1972643286 countsByYear W19726432862015 @default.
- W1972643286 countsByYear W19726432862016 @default.
- W1972643286 countsByYear W19726432862017 @default.
- W1972643286 countsByYear W19726432862018 @default.
- W1972643286 countsByYear W19726432862019 @default.
- W1972643286 countsByYear W19726432862020 @default.
- W1972643286 countsByYear W19726432862021 @default.
- W1972643286 countsByYear W19726432862022 @default.
- W1972643286 countsByYear W19726432862023 @default.
- W1972643286 crossrefType "journal-article" @default.
- W1972643286 hasAuthorship W1972643286A5044681717 @default.
- W1972643286 hasAuthorship W1972643286A5055141922 @default.
- W1972643286 hasAuthorship W1972643286A5072053758 @default.
- W1972643286 hasAuthorship W1972643286A5078021876 @default.
- W1972643286 hasAuthorship W1972643286A5084075779 @default.
- W1972643286 hasBestOaLocation W19726432862 @default.
- W1972643286 hasConcept C106978608 @default.
- W1972643286 hasConcept C113603373 @default.
- W1972643286 hasConcept C120665830 @default.
- W1972643286 hasConcept C121332964 @default.
- W1972643286 hasConcept C140901224 @default.
- W1972643286 hasConcept C147120987 @default.
- W1972643286 hasConcept C168834538 @default.
- W1972643286 hasConcept C187590223 @default.
- W1972643286 hasConcept C207114421 @default.
- W1972643286 hasConcept C2778735019 @default.
- W1972643286 hasConcept C2779567845 @default.
- W1972643286 hasConcept C37914503 @default.
- W1972643286 hasConcept C62520636 @default.
- W1972643286 hasConcept C74650414 @default.
- W1972643286 hasConceptScore W1972643286C106978608 @default.
- W1972643286 hasConceptScore W1972643286C113603373 @default.
- W1972643286 hasConceptScore W1972643286C120665830 @default.
- W1972643286 hasConceptScore W1972643286C121332964 @default.
- W1972643286 hasConceptScore W1972643286C140901224 @default.
- W1972643286 hasConceptScore W1972643286C147120987 @default.
- W1972643286 hasConceptScore W1972643286C168834538 @default.
- W1972643286 hasConceptScore W1972643286C187590223 @default.
- W1972643286 hasConceptScore W1972643286C207114421 @default.
- W1972643286 hasConceptScore W1972643286C2778735019 @default.
- W1972643286 hasConceptScore W1972643286C2779567845 @default.
- W1972643286 hasConceptScore W1972643286C37914503 @default.
- W1972643286 hasConceptScore W1972643286C62520636 @default.
- W1972643286 hasConceptScore W1972643286C74650414 @default.
- W1972643286 hasIssue "7437" @default.
- W1972643286 hasLocation W19726432861 @default.
- W1972643286 hasLocation W19726432862 @default.
- W1972643286 hasLocation W19726432863 @default.
- W1972643286 hasOpenAccess W1972643286 @default.
- W1972643286 hasPrimaryLocation W19726432861 @default.
- W1972643286 hasRelatedWork W1630753651 @default.
- W1972643286 hasRelatedWork W1972643286 @default.
- W1972643286 hasRelatedWork W2066423699 @default.
- W1972643286 hasRelatedWork W2090860115 @default.
- W1972643286 hasRelatedWork W2095132937 @default.