Matches in SemOpenAlex for { <https://semopenalex.org/work/W1972761413> ?p ?o ?g. }
- W1972761413 endingPage "70" @default.
- W1972761413 startingPage "53" @default.
- W1972761413 abstract "An important goal for drug development within the pharmaceutical industry is the application of simple methods to determine human pharmacokinetic parameters. Effective computing tools are able to increase scientists’ ability to make precise selections of chemical compounds in accordance with desired pharmacokinetic and safety profiles. This work presents a method for making predictions of the clearance, plasma protein binding, and volume of distribution for alkaloid drugs. The tools used in this method were genetic algorithms (GAs) combined with artificial neural networks (ANNs) and these were applied to select the most relevant molecular descriptors and to develop quantitative structure-pharmacokinetic relationship (QSPkR) models. Results showed that three-dimensional structural descriptors had more influence on QSPkR models. The models developed in this study were able to predict systemic clearance, volume of distribution, and plasma protein binding with normalized root mean square error (NRMSE) values of 0.151, 0.263, and 0.423, respectively. These results demonstrate an acceptable level of efficiency of the developed models for the prediction of pharmacokinetic parameters." @default.
- W1972761413 created "2016-06-24" @default.
- W1972761413 creator A5012262515 @default.
- W1972761413 creator A5038309640 @default.
- W1972761413 creator A5062896071 @default.
- W1972761413 creator A5068435169 @default.
- W1972761413 creator A5085624556 @default.
- W1972761413 date "2014-01-01" @default.
- W1972761413 modified "2023-09-28" @default.
- W1972761413 title "Prediction of Pharmacokinetic Parameters Using a Genetic Algorithm Combined with an Artificial Neural Network for a Series of Alkaloid Drugs" @default.
- W1972761413 cites W1536679477 @default.
- W1972761413 cites W1545231783 @default.
- W1972761413 cites W1573275580 @default.
- W1972761413 cites W1575639801 @default.
- W1972761413 cites W1645298096 @default.
- W1972761413 cites W1682768769 @default.
- W1972761413 cites W1965440813 @default.
- W1972761413 cites W1970209460 @default.
- W1972761413 cites W1972152533 @default.
- W1972761413 cites W1972772493 @default.
- W1972761413 cites W1974875661 @default.
- W1972761413 cites W1977059612 @default.
- W1972761413 cites W1978508948 @default.
- W1972761413 cites W1978629585 @default.
- W1972761413 cites W1987035766 @default.
- W1972761413 cites W1990184714 @default.
- W1972761413 cites W1993645848 @default.
- W1972761413 cites W1995746750 @default.
- W1972761413 cites W1996346862 @default.
- W1972761413 cites W2003276190 @default.
- W1972761413 cites W2009526534 @default.
- W1972761413 cites W2012887432 @default.
- W1972761413 cites W2014244010 @default.
- W1972761413 cites W2017043087 @default.
- W1972761413 cites W2019334008 @default.
- W1972761413 cites W2019810521 @default.
- W1972761413 cites W2025409022 @default.
- W1972761413 cites W2029112828 @default.
- W1972761413 cites W2034151123 @default.
- W1972761413 cites W2039478311 @default.
- W1972761413 cites W2045895434 @default.
- W1972761413 cites W2055334398 @default.
- W1972761413 cites W2066435715 @default.
- W1972761413 cites W2072462334 @default.
- W1972761413 cites W2077483199 @default.
- W1972761413 cites W2081230466 @default.
- W1972761413 cites W2087908817 @default.
- W1972761413 cites W2093091278 @default.
- W1972761413 cites W2102186138 @default.
- W1972761413 cites W2105649494 @default.
- W1972761413 cites W2114903378 @default.
- W1972761413 cites W2117753715 @default.
- W1972761413 cites W2123876002 @default.
- W1972761413 cites W2125063954 @default.
- W1972761413 cites W2132316821 @default.
- W1972761413 cites W2132733435 @default.
- W1972761413 cites W2132991950 @default.
- W1972761413 cites W2134015400 @default.
- W1972761413 cites W2142739270 @default.
- W1972761413 cites W2144465276 @default.
- W1972761413 cites W2151349499 @default.
- W1972761413 cites W2153246785 @default.
- W1972761413 cites W2161723120 @default.
- W1972761413 cites W2163646378 @default.
- W1972761413 cites W2301584289 @default.
- W1972761413 cites W2405266681 @default.
- W1972761413 cites W2473004715 @default.
- W1972761413 cites W3175318380 @default.
- W1972761413 doi "https://doi.org/10.3797/scipharm.1306-10" @default.
- W1972761413 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3951233" @default.
- W1972761413 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24634842" @default.
- W1972761413 hasPublicationYear "2014" @default.
- W1972761413 type Work @default.
- W1972761413 sameAs 1972761413 @default.
- W1972761413 citedByCount "8" @default.
- W1972761413 countsByYear W19727614132014 @default.
- W1972761413 countsByYear W19727614132015 @default.
- W1972761413 countsByYear W19727614132016 @default.
- W1972761413 countsByYear W19727614132017 @default.
- W1972761413 countsByYear W19727614132020 @default.
- W1972761413 countsByYear W19727614132021 @default.
- W1972761413 countsByYear W19727614132023 @default.
- W1972761413 crossrefType "journal-article" @default.
- W1972761413 hasAuthorship W1972761413A5012262515 @default.
- W1972761413 hasAuthorship W1972761413A5038309640 @default.
- W1972761413 hasAuthorship W1972761413A5062896071 @default.
- W1972761413 hasAuthorship W1972761413A5068435169 @default.
- W1972761413 hasAuthorship W1972761413A5085624556 @default.
- W1972761413 hasBestOaLocation W19727614131 @default.
- W1972761413 hasConcept C110121322 @default.
- W1972761413 hasConcept C112705442 @default.
- W1972761413 hasConcept C119857082 @default.
- W1972761413 hasConcept C134306372 @default.
- W1972761413 hasConcept C139254425 @default.
- W1972761413 hasConcept C186060115 @default.
- W1972761413 hasConcept C33923547 @default.
- W1972761413 hasConcept C41008148 @default.
- W1972761413 hasConcept C50644808 @default.