Matches in SemOpenAlex for { <https://semopenalex.org/work/W1972804947> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W1972804947 endingPage "174" @default.
- W1972804947 startingPage "159" @default.
- W1972804947 abstract "In order for an autonomous agent to behave robustly in a variety of environments, it must have the ability to learn approximations to many different functions. The function approximator used by such an agent is subject to a number of constraints that may not apply in a traditional supervised learning setting. Many different function approximators exist and are appropriate for different problems. This paper proposes a set of criteria for function approximators for autonomous agents. Additionally, for those problems on which polynomial regression is a candidate technique, the paper presents an enhancement that meets these criteria. In particular, using polynomial regression typically requires a manual choice of the polynomial's degree, trading off between function accuracy and computational and memory efficiency. Polynomial Regression with Automated Degree (PRAD) is a novel function approximation method that uses training data to automatically identify an appropriate degree for the polynomial. PRAD is fully implemented. Empirical tests demonstrate its ability to efficiently and accurately approximate both a wide variety of synthetic functions and real-world data gathered by a mobile robot." @default.
- W1972804947 created "2016-06-24" @default.
- W1972804947 creator A5001594330 @default.
- W1972804947 creator A5065153055 @default.
- W1972804947 date "2008-02-01" @default.
- W1972804947 modified "2023-10-16" @default.
- W1972804947 title "POLYNOMIAL REGRESSION WITH AUTOMATED DEGREE: A FUNCTION APPROXIMATOR FOR AUTONOMOUS AGENTS" @default.
- W1972804947 cites W1480376833 @default.
- W1972804947 cites W2044538683 @default.
- W1972804947 cites W2072773743 @default.
- W1972804947 cites W2102201073 @default.
- W1972804947 cites W2103496339 @default.
- W1972804947 cites W2137983211 @default.
- W1972804947 cites W2149294679 @default.
- W1972804947 cites W2168175751 @default.
- W1972804947 cites W4300402905 @default.
- W1972804947 doi "https://doi.org/10.1142/s0218213008003820" @default.
- W1972804947 hasPublicationYear "2008" @default.
- W1972804947 type Work @default.
- W1972804947 sameAs 1972804947 @default.
- W1972804947 citedByCount "4" @default.
- W1972804947 countsByYear W19728049472013 @default.
- W1972804947 countsByYear W19728049472014 @default.
- W1972804947 countsByYear W19728049472016 @default.
- W1972804947 crossrefType "journal-article" @default.
- W1972804947 hasAuthorship W1972804947A5001594330 @default.
- W1972804947 hasAuthorship W1972804947A5065153055 @default.
- W1972804947 hasConcept C105795698 @default.
- W1972804947 hasConcept C119857082 @default.
- W1972804947 hasConcept C120068334 @default.
- W1972804947 hasConcept C121332964 @default.
- W1972804947 hasConcept C126255220 @default.
- W1972804947 hasConcept C134306372 @default.
- W1972804947 hasConcept C136197465 @default.
- W1972804947 hasConcept C14036430 @default.
- W1972804947 hasConcept C152877465 @default.
- W1972804947 hasConcept C154945302 @default.
- W1972804947 hasConcept C177264268 @default.
- W1972804947 hasConcept C199360897 @default.
- W1972804947 hasConcept C24890656 @default.
- W1972804947 hasConcept C2775997480 @default.
- W1972804947 hasConcept C33923547 @default.
- W1972804947 hasConcept C41008148 @default.
- W1972804947 hasConcept C50644808 @default.
- W1972804947 hasConcept C78458016 @default.
- W1972804947 hasConcept C83546350 @default.
- W1972804947 hasConcept C86803240 @default.
- W1972804947 hasConcept C90119067 @default.
- W1972804947 hasConcept C91873725 @default.
- W1972804947 hasConceptScore W1972804947C105795698 @default.
- W1972804947 hasConceptScore W1972804947C119857082 @default.
- W1972804947 hasConceptScore W1972804947C120068334 @default.
- W1972804947 hasConceptScore W1972804947C121332964 @default.
- W1972804947 hasConceptScore W1972804947C126255220 @default.
- W1972804947 hasConceptScore W1972804947C134306372 @default.
- W1972804947 hasConceptScore W1972804947C136197465 @default.
- W1972804947 hasConceptScore W1972804947C14036430 @default.
- W1972804947 hasConceptScore W1972804947C152877465 @default.
- W1972804947 hasConceptScore W1972804947C154945302 @default.
- W1972804947 hasConceptScore W1972804947C177264268 @default.
- W1972804947 hasConceptScore W1972804947C199360897 @default.
- W1972804947 hasConceptScore W1972804947C24890656 @default.
- W1972804947 hasConceptScore W1972804947C2775997480 @default.
- W1972804947 hasConceptScore W1972804947C33923547 @default.
- W1972804947 hasConceptScore W1972804947C41008148 @default.
- W1972804947 hasConceptScore W1972804947C50644808 @default.
- W1972804947 hasConceptScore W1972804947C78458016 @default.
- W1972804947 hasConceptScore W1972804947C83546350 @default.
- W1972804947 hasConceptScore W1972804947C86803240 @default.
- W1972804947 hasConceptScore W1972804947C90119067 @default.
- W1972804947 hasConceptScore W1972804947C91873725 @default.
- W1972804947 hasIssue "01" @default.
- W1972804947 hasLocation W19728049471 @default.
- W1972804947 hasOpenAccess W1972804947 @default.
- W1972804947 hasPrimaryLocation W19728049471 @default.
- W1972804947 hasRelatedWork W1969008944 @default.
- W1972804947 hasRelatedWork W2104764403 @default.
- W1972804947 hasRelatedWork W2278810475 @default.
- W1972804947 hasRelatedWork W2289959095 @default.
- W1972804947 hasRelatedWork W2322789765 @default.
- W1972804947 hasRelatedWork W23477101 @default.
- W1972804947 hasRelatedWork W2362390349 @default.
- W1972804947 hasRelatedWork W2374286188 @default.
- W1972804947 hasRelatedWork W2378036581 @default.
- W1972804947 hasRelatedWork W4312627304 @default.
- W1972804947 hasVolume "17" @default.
- W1972804947 isParatext "false" @default.
- W1972804947 isRetracted "false" @default.
- W1972804947 magId "1972804947" @default.
- W1972804947 workType "article" @default.