Matches in SemOpenAlex for { <https://semopenalex.org/work/W1973011926> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W1973011926 abstract "Efficient data collection of high-quantity and low-cost highway assets such as road signs, traffic signals, light poles, and guardrails is a critical element to the operation, maintenance, and preservation of transportation infrastructure systems. Despite its importance, current practice of highway asset data collection is time-consuming, subjective, and potentially unsafe. The high volume of the data that needs to be collected can also negatively impact the quality of the analysis. To address these limitations, this paper proposes a new algorithm for semantic segmentation and recognition of highway assets using video frames collected from a car-mounted camera. The proposed set of algorithms (1) takes the captured frames and using a pipeline of structure from motion and multiview stereo reconstructs a three-dimensional (3D) point cloud model of the highway and surrounding assets; (2) using a Semantic Texton Forest classifier, each geo-registered two-dimensional (2D) video frame at the pixel-level is segmented based on shape, texture, and color of the highway assets; and finally, (3) based on the results of the 2D segmentation and a new voting scheme, each reconstructed 3D point in the cloud is also categorized for one type of asset and is color coded accordingly. The resulting augmented reality environment that integrates the color-coded point clouds with the geo-registered video frames enables a user to conduct visual walk through and query different categories of assets. Experiments were performed on a challenging video data set containing sequences filmed from a moving car on a 2.2-mi-long, two-lane highway research facility. Experimental results with an average accuracy of 76.50 and 86.75% in segmentation and pixel-level recognition of 12 types of asset categories reflect the promise of the applicability of this approach for segmentation and recognition of highway assets from image-based 3D point clouds. It also enables future algorithmic developments for 3D localization of traffic signs and other assets that are detected using the state-of-the-art vision-based methods." @default.
- W1973011926 created "2016-06-24" @default.
- W1973011926 creator A5003837545 @default.
- W1973011926 creator A5004440941 @default.
- W1973011926 creator A5081955215 @default.
- W1973011926 date "2015-01-01" @default.
- W1973011926 modified "2023-10-17" @default.
- W1973011926 title "Segmentation and Recognition of Highway Assets Using Image-Based 3D Point Clouds and Semantic Texton Forests" @default.
- W1973011926 cites W112289365 @default.
- W1973011926 cites W1525571356 @default.
- W1973011926 cites W1540854210 @default.
- W1973011926 cites W1541496496 @default.
- W1973011926 cites W1552981134 @default.
- W1973011926 cites W1913356549 @default.
- W1973011926 cites W2001790138 @default.
- W1973011926 cites W2008043832 @default.
- W1973011926 cites W2008706659 @default.
- W1973011926 cites W2011051638 @default.
- W1973011926 cites W2013472030 @default.
- W1973011926 cites W2021555889 @default.
- W1973011926 cites W2031106548 @default.
- W1973011926 cites W2033819227 @default.
- W1973011926 cites W2041112258 @default.
- W1973011926 cites W2046676060 @default.
- W1973011926 cites W2054279472 @default.
- W1973011926 cites W2067946584 @default.
- W1973011926 cites W2071491666 @default.
- W1973011926 cites W2085261163 @default.
- W1973011926 cites W2087952184 @default.
- W1973011926 cites W2090102821 @default.
- W1973011926 cites W2100588357 @default.
- W1973011926 cites W2109635530 @default.
- W1973011926 cites W2115211744 @default.
- W1973011926 cites W2120539693 @default.
- W1973011926 cites W2125322154 @default.
- W1973011926 cites W2131296063 @default.
- W1973011926 cites W2131420079 @default.
- W1973011926 cites W2139228846 @default.
- W1973011926 cites W2150581781 @default.
- W1973011926 cites W2155556434 @default.
- W1973011926 cites W2159733498 @default.
- W1973011926 cites W2164598857 @default.
- W1973011926 cites W2536043048 @default.
- W1973011926 cites W4255682506 @default.
- W1973011926 doi "https://doi.org/10.1061/(asce)cp.1943-5487.0000283" @default.
- W1973011926 hasPublicationYear "2015" @default.
- W1973011926 type Work @default.
- W1973011926 sameAs 1973011926 @default.
- W1973011926 citedByCount "55" @default.
- W1973011926 countsByYear W19730119262012 @default.
- W1973011926 countsByYear W19730119262014 @default.
- W1973011926 countsByYear W19730119262015 @default.
- W1973011926 countsByYear W19730119262016 @default.
- W1973011926 countsByYear W19730119262017 @default.
- W1973011926 countsByYear W19730119262018 @default.
- W1973011926 countsByYear W19730119262019 @default.
- W1973011926 countsByYear W19730119262020 @default.
- W1973011926 countsByYear W19730119262021 @default.
- W1973011926 countsByYear W19730119262022 @default.
- W1973011926 countsByYear W19730119262023 @default.
- W1973011926 crossrefType "journal-article" @default.
- W1973011926 hasAuthorship W1973011926A5003837545 @default.
- W1973011926 hasAuthorship W1973011926A5004440941 @default.
- W1973011926 hasAuthorship W1973011926A5081955215 @default.
- W1973011926 hasConcept C131979681 @default.
- W1973011926 hasConcept C154945302 @default.
- W1973011926 hasConcept C31972630 @default.
- W1973011926 hasConcept C41008148 @default.
- W1973011926 hasConcept C89600930 @default.
- W1973011926 hasConceptScore W1973011926C131979681 @default.
- W1973011926 hasConceptScore W1973011926C154945302 @default.
- W1973011926 hasConceptScore W1973011926C31972630 @default.
- W1973011926 hasConceptScore W1973011926C41008148 @default.
- W1973011926 hasConceptScore W1973011926C89600930 @default.
- W1973011926 hasIssue "1" @default.
- W1973011926 hasLocation W19730119261 @default.
- W1973011926 hasOpenAccess W1973011926 @default.
- W1973011926 hasPrimaryLocation W19730119261 @default.
- W1973011926 hasRelatedWork W1669643531 @default.
- W1973011926 hasRelatedWork W2005437358 @default.
- W1973011926 hasRelatedWork W2008656436 @default.
- W1973011926 hasRelatedWork W2023558673 @default.
- W1973011926 hasRelatedWork W2039154422 @default.
- W1973011926 hasRelatedWork W2122581818 @default.
- W1973011926 hasRelatedWork W2134924024 @default.
- W1973011926 hasRelatedWork W2517104666 @default.
- W1973011926 hasRelatedWork W2979718872 @default.
- W1973011926 hasRelatedWork W2182382398 @default.
- W1973011926 hasVolume "29" @default.
- W1973011926 isParatext "false" @default.
- W1973011926 isRetracted "false" @default.
- W1973011926 magId "1973011926" @default.
- W1973011926 workType "article" @default.