Matches in SemOpenAlex for { <https://semopenalex.org/work/W1973076992> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W1973076992 endingPage "3593" @default.
- W1973076992 startingPage "3585" @default.
- W1973076992 abstract "The wavelet theory and multiscale method has generated an interest for fault monitoring and control in petrochemical processes. Principal component analysis (PCA) has been used successfully as a multivariate statistical process tool for detecting faults by extracting feature information from complex petrochemical data. The traditional linear PCA (LPCA) is restricted to complicated nonlinear systems; therefore, an adaptive nonlinear PCA (NLPCA) that is based on an improved input training neural network (IT-NN) is presented. A momentum factor and adaptive learning rates are added into the learning algorithm, to improve the training speed of the IT-NN. A novel method of wavelet-based adaptive multiscale nonlinear PCA (MS−NLPCA) is proposed for process signal monitoring. It can effectively monitor the slow and feeble changes of fault signals that cannot be monitored by conventional PCA, and yet detect early faults to yield a minimum rate of false alarms. The validity of the proposed approach has been proved by experimental simulations and practical application." @default.
- W1973076992 created "2016-06-24" @default.
- W1973076992 creator A5034064578 @default.
- W1973076992 creator A5054385364 @default.
- W1973076992 date "2005-03-25" @default.
- W1973076992 modified "2023-10-16" @default.
- W1973076992 title "Multiscale Nonlinear Principal Component Analysis (NLPCA) and Its Application for Chemical Process Monitoring" @default.
- W1973076992 cites W1993694278 @default.
- W1973076992 cites W204885769 @default.
- W1973076992 cites W2062702030 @default.
- W1973076992 cites W2068561554 @default.
- W1973076992 cites W2079441011 @default.
- W1973076992 cites W2084327162 @default.
- W1973076992 cites W2093479200 @default.
- W1973076992 cites W2122538988 @default.
- W1973076992 doi "https://doi.org/10.1021/ie0493107" @default.
- W1973076992 hasPublicationYear "2005" @default.
- W1973076992 type Work @default.
- W1973076992 sameAs 1973076992 @default.
- W1973076992 citedByCount "47" @default.
- W1973076992 countsByYear W19730769922012 @default.
- W1973076992 countsByYear W19730769922013 @default.
- W1973076992 countsByYear W19730769922014 @default.
- W1973076992 countsByYear W19730769922015 @default.
- W1973076992 countsByYear W19730769922016 @default.
- W1973076992 countsByYear W19730769922017 @default.
- W1973076992 countsByYear W19730769922018 @default.
- W1973076992 countsByYear W19730769922019 @default.
- W1973076992 countsByYear W19730769922020 @default.
- W1973076992 countsByYear W19730769922021 @default.
- W1973076992 countsByYear W19730769922022 @default.
- W1973076992 countsByYear W19730769922023 @default.
- W1973076992 crossrefType "journal-article" @default.
- W1973076992 hasAuthorship W1973076992A5034064578 @default.
- W1973076992 hasAuthorship W1973076992A5054385364 @default.
- W1973076992 hasConcept C111919701 @default.
- W1973076992 hasConcept C121332964 @default.
- W1973076992 hasConcept C127313418 @default.
- W1973076992 hasConcept C152745839 @default.
- W1973076992 hasConcept C153180895 @default.
- W1973076992 hasConcept C154945302 @default.
- W1973076992 hasConcept C158622935 @default.
- W1973076992 hasConcept C165205528 @default.
- W1973076992 hasConcept C172707124 @default.
- W1973076992 hasConcept C175551986 @default.
- W1973076992 hasConcept C27438332 @default.
- W1973076992 hasConcept C41008148 @default.
- W1973076992 hasConcept C47432892 @default.
- W1973076992 hasConcept C50644808 @default.
- W1973076992 hasConcept C62520636 @default.
- W1973076992 hasConcept C98045186 @default.
- W1973076992 hasConceptScore W1973076992C111919701 @default.
- W1973076992 hasConceptScore W1973076992C121332964 @default.
- W1973076992 hasConceptScore W1973076992C127313418 @default.
- W1973076992 hasConceptScore W1973076992C152745839 @default.
- W1973076992 hasConceptScore W1973076992C153180895 @default.
- W1973076992 hasConceptScore W1973076992C154945302 @default.
- W1973076992 hasConceptScore W1973076992C158622935 @default.
- W1973076992 hasConceptScore W1973076992C165205528 @default.
- W1973076992 hasConceptScore W1973076992C172707124 @default.
- W1973076992 hasConceptScore W1973076992C175551986 @default.
- W1973076992 hasConceptScore W1973076992C27438332 @default.
- W1973076992 hasConceptScore W1973076992C41008148 @default.
- W1973076992 hasConceptScore W1973076992C47432892 @default.
- W1973076992 hasConceptScore W1973076992C50644808 @default.
- W1973076992 hasConceptScore W1973076992C62520636 @default.
- W1973076992 hasConceptScore W1973076992C98045186 @default.
- W1973076992 hasIssue "10" @default.
- W1973076992 hasLocation W19730769921 @default.
- W1973076992 hasOpenAccess W1973076992 @default.
- W1973076992 hasPrimaryLocation W19730769921 @default.
- W1973076992 hasRelatedWork W2029412421 @default.
- W1973076992 hasRelatedWork W2085553065 @default.
- W1973076992 hasRelatedWork W2363013074 @default.
- W1973076992 hasRelatedWork W2376486823 @default.
- W1973076992 hasRelatedWork W2380927352 @default.
- W1973076992 hasRelatedWork W2391372548 @default.
- W1973076992 hasRelatedWork W3080565888 @default.
- W1973076992 hasRelatedWork W3178621026 @default.
- W1973076992 hasRelatedWork W4211209597 @default.
- W1973076992 hasRelatedWork W2137598809 @default.
- W1973076992 hasVolume "44" @default.
- W1973076992 isParatext "false" @default.
- W1973076992 isRetracted "false" @default.
- W1973076992 magId "1973076992" @default.
- W1973076992 workType "article" @default.