Matches in SemOpenAlex for { <https://semopenalex.org/work/W1973191172> ?p ?o ?g. }
- W1973191172 endingPage "5726" @default.
- W1973191172 startingPage "5717" @default.
- W1973191172 abstract "Electron paramagnetic resonance imaging (EPRI) is a new functional imaging modality that can provide valuable in vivo physiological information and aids as a complimentary imaging technique to MRI and PET of tissues especially with respect to in vivo pO2, redox status and pharmacology. EPRI deals with the measurement of distribution and in vivo dynamics, using exogenous paramagnetic spin probes injected into the scan subject. The bio-clearance and dosage of these spin probes are issues of concern in EPRI. As a consequence, tomographic reconstruction from 'noisy' and 'sparse' number of projections is highly desirable in EPRI for the purpose of dose reduction and fast acquisition time respectively. The aim of research is to address the incompleteness of such projection data by developing a software which requires no change in acquisition hardware and/or no a priori knowledge of imaging process. The new software approach integrates soft computing and multiresolution within tomographic reconstruction to ''intelligently'' extract the details of importance at several levels of resolution. The new multiresolution reconstruction algorithm is based on wavelet transform with computational complexity same as the clinically used, filtered backprojection (FBP) method, except that the filters are now angle dependent. Gain in intelligence is achieved employing multiobjective genetic algorithm (GA) to find values for wavelet denoising threshold with optimum performance in terms of signal to noise ratio (SNR) and resolution of the reconstructed image. Feasibility of the approach for fast and low dose tomographic reconstruction is demonstrated with simulated SheppLogan head phantom. Subsequently, the experimental results with phantom and in vivo EPRI proves that the developed method can reduce the dose level and number of projections by 60-75% in tomographic reconstruction. In particular the quantitative analysis, using RMSE, PSNR and Liu's error factor, shows that our approach outperforms the widely used, FBP and state-of-art wavelet-based tomographic reconstruction method in achieving image quality with acceptable diagnostic accuracy." @default.
- W1973191172 created "2016-06-24" @default.
- W1973191172 creator A5054308084 @default.
- W1973191172 creator A5066739882 @default.
- W1973191172 creator A5070080503 @default.
- W1973191172 creator A5081250782 @default.
- W1973191172 date "2012-04-01" @default.
- W1973191172 modified "2023-10-09" @default.
- W1973191172 title "Heuristic wavelet approach for low-dose EPR tomographic reconstruction: An applicability analysis with phantom and in vivo imaging" @default.
- W1973191172 cites W128366577 @default.
- W1973191172 cites W1967387536 @default.
- W1973191172 cites W1968947824 @default.
- W1973191172 cites W1991603789 @default.
- W1973191172 cites W2000169729 @default.
- W1973191172 cites W2014929720 @default.
- W1973191172 cites W2021911976 @default.
- W1973191172 cites W2028111455 @default.
- W1973191172 cites W2052051935 @default.
- W1973191172 cites W2056603938 @default.
- W1973191172 cites W2069112369 @default.
- W1973191172 cites W2069629287 @default.
- W1973191172 cites W2072269600 @default.
- W1973191172 cites W2095631289 @default.
- W1973191172 cites W2109188022 @default.
- W1973191172 cites W2112250360 @default.
- W1973191172 cites W2119575718 @default.
- W1973191172 cites W2123991937 @default.
- W1973191172 cites W2146121209 @default.
- W1973191172 cites W2154744699 @default.
- W1973191172 cites W2165956501 @default.
- W1973191172 cites W4240337472 @default.
- W1973191172 cites W2137659304 @default.
- W1973191172 doi "https://doi.org/10.1016/j.eswa.2011.11.098" @default.
- W1973191172 hasPublicationYear "2012" @default.
- W1973191172 type Work @default.
- W1973191172 sameAs 1973191172 @default.
- W1973191172 citedByCount "9" @default.
- W1973191172 countsByYear W19731911722013 @default.
- W1973191172 countsByYear W19731911722014 @default.
- W1973191172 countsByYear W19731911722015 @default.
- W1973191172 countsByYear W19731911722016 @default.
- W1973191172 countsByYear W19731911722019 @default.
- W1973191172 countsByYear W19731911722021 @default.
- W1973191172 countsByYear W19731911722023 @default.
- W1973191172 crossrefType "journal-article" @default.
- W1973191172 hasAuthorship W1973191172A5054308084 @default.
- W1973191172 hasAuthorship W1973191172A5066739882 @default.
- W1973191172 hasAuthorship W1973191172A5070080503 @default.
- W1973191172 hasAuthorship W1973191172A5081250782 @default.
- W1973191172 hasConcept C104293457 @default.
- W1973191172 hasConcept C121332964 @default.
- W1973191172 hasConcept C136229726 @default.
- W1973191172 hasConcept C141379421 @default.
- W1973191172 hasConcept C150903083 @default.
- W1973191172 hasConcept C153180895 @default.
- W1973191172 hasConcept C154945302 @default.
- W1973191172 hasConcept C173801870 @default.
- W1973191172 hasConcept C19527891 @default.
- W1973191172 hasConcept C207001950 @default.
- W1973191172 hasConcept C2989005 @default.
- W1973191172 hasConcept C31972630 @default.
- W1973191172 hasConcept C41008148 @default.
- W1973191172 hasConcept C47432892 @default.
- W1973191172 hasConcept C71924100 @default.
- W1973191172 hasConcept C86803240 @default.
- W1973191172 hasConcept C97742081 @default.
- W1973191172 hasConceptScore W1973191172C104293457 @default.
- W1973191172 hasConceptScore W1973191172C121332964 @default.
- W1973191172 hasConceptScore W1973191172C136229726 @default.
- W1973191172 hasConceptScore W1973191172C141379421 @default.
- W1973191172 hasConceptScore W1973191172C150903083 @default.
- W1973191172 hasConceptScore W1973191172C153180895 @default.
- W1973191172 hasConceptScore W1973191172C154945302 @default.
- W1973191172 hasConceptScore W1973191172C173801870 @default.
- W1973191172 hasConceptScore W1973191172C19527891 @default.
- W1973191172 hasConceptScore W1973191172C207001950 @default.
- W1973191172 hasConceptScore W1973191172C2989005 @default.
- W1973191172 hasConceptScore W1973191172C31972630 @default.
- W1973191172 hasConceptScore W1973191172C41008148 @default.
- W1973191172 hasConceptScore W1973191172C47432892 @default.
- W1973191172 hasConceptScore W1973191172C71924100 @default.
- W1973191172 hasConceptScore W1973191172C86803240 @default.
- W1973191172 hasConceptScore W1973191172C97742081 @default.
- W1973191172 hasIssue "5" @default.
- W1973191172 hasLocation W19731911721 @default.
- W1973191172 hasOpenAccess W1973191172 @default.
- W1973191172 hasPrimaryLocation W19731911721 @default.
- W1973191172 hasRelatedWork W170151271 @default.
- W1973191172 hasRelatedWork W2004988775 @default.
- W1973191172 hasRelatedWork W2017732498 @default.
- W1973191172 hasRelatedWork W2088308468 @default.
- W1973191172 hasRelatedWork W2134966318 @default.
- W1973191172 hasRelatedWork W2137532034 @default.
- W1973191172 hasRelatedWork W2144778520 @default.
- W1973191172 hasRelatedWork W2295596929 @default.
- W1973191172 hasRelatedWork W2982317495 @default.
- W1973191172 hasRelatedWork W1574221054 @default.
- W1973191172 hasVolume "39" @default.