Matches in SemOpenAlex for { <https://semopenalex.org/work/W1973295658> ?p ?o ?g. }
- W1973295658 endingPage "57" @default.
- W1973295658 startingPage "45" @default.
- W1973295658 abstract "When compressing soil, there is a characteristic relationship between compressive stress and volume change that can be used to define important soil mechanical properties. Two defining features can be determined – the compression index (Cc – the modulus of the slope of the linear virgin compression curve) and the precompression stress (σ′p – the transition point between the elastic rebound curve and the virgin compression curve). These are indicators of compressibility and stress history respectively. The purpose of this paper is to evaluate different ways of estimating these indicators based on laboratory test data. Repacked soils with a range of textures were subjected to sequential compressions of 50, 100 and 200 kPa, which provided two compression characteristics with “known” σ′p of 50 and 100 kPa. Three functions were fitted to the measured test data (fourth-order polynomial, symmetrical logistic sigmoidal and asymmetrical Gompertz sigmoidal). Values of Cc were estimated by linear regression (for the data later fitted with a polynomial function) or by the tangent at the inflection point derived from model parameters (logistic and Gompertz functions). Three estimates of σ′p were calculated for each of the three functions: the standard Casagrande method (C), the intercept of the virgin compression curve and the initial (no stress) horizontal line (V–I), and the point of maximum curvature (MC) derived from the curvature function (κ). The accuracy of estimating σ′p and the magnitude of Cc generally increased with clay content. Estimates of Cc based on sigmoidal curves did not differ greatly from the linear regression estimate. Sigmoidal curves yielded σ′p estimates with lower absolute deviations from known values than polynomial-based estimates. The MC calculation based on the Gompertz function gave the most accurate estimate of σ′p. The lower asymptote of sigmoidal curves may also correspond to the water-filled pore space. Thus, despite the fact that all three functions fitted the measured data equally well, characteristics based on the sigmoidal curves were deemed to be most appropriate. The greater accuracy of the prediction of σ′p favoured the Gompertz function. Wider applicability of this was further checked with data selected from an independent database on subsoil compaction. We recommend fitting the Gompertz function to measured soil compression characteristic test data, and to define Cc objectively as the modulus of the slope of the tangent at the inflection point, providing this lies within the measured data range, and σ′p as the point of maximum curvature as defined by κ." @default.
- W1973295658 created "2016-06-24" @default.
- W1973295658 creator A5005797102 @default.
- W1973295658 creator A5038455774 @default.
- W1973295658 creator A5054005081 @default.
- W1973295658 creator A5075986365 @default.
- W1973295658 creator A5077468851 @default.
- W1973295658 creator A5080248000 @default.
- W1973295658 date "2006-08-01" @default.
- W1973295658 modified "2023-09-27" @default.
- W1973295658 title "Calculation of the compression index and precompression stress from soil compression test data" @default.
- W1973295658 cites W1964981647 @default.
- W1973295658 cites W1965028588 @default.
- W1973295658 cites W1974815578 @default.
- W1973295658 cites W2001790227 @default.
- W1973295658 cites W2024593334 @default.
- W1973295658 cites W2025308332 @default.
- W1973295658 cites W2041258779 @default.
- W1973295658 cites W2068583336 @default.
- W1973295658 cites W2084347008 @default.
- W1973295658 cites W2084738584 @default.
- W1973295658 cites W2158303808 @default.
- W1973295658 cites W2162604832 @default.
- W1973295658 cites W2396286431 @default.
- W1973295658 cites W4248549209 @default.
- W1973295658 cites W4256155300 @default.
- W1973295658 doi "https://doi.org/10.1016/j.still.2005.06.012" @default.
- W1973295658 hasPublicationYear "2006" @default.
- W1973295658 type Work @default.
- W1973295658 sameAs 1973295658 @default.
- W1973295658 citedByCount "123" @default.
- W1973295658 countsByYear W19732956582012 @default.
- W1973295658 countsByYear W19732956582013 @default.
- W1973295658 countsByYear W19732956582014 @default.
- W1973295658 countsByYear W19732956582015 @default.
- W1973295658 countsByYear W19732956582016 @default.
- W1973295658 countsByYear W19732956582017 @default.
- W1973295658 countsByYear W19732956582018 @default.
- W1973295658 countsByYear W19732956582019 @default.
- W1973295658 countsByYear W19732956582020 @default.
- W1973295658 countsByYear W19732956582021 @default.
- W1973295658 countsByYear W19732956582022 @default.
- W1973295658 countsByYear W19732956582023 @default.
- W1973295658 crossrefType "journal-article" @default.
- W1973295658 hasAuthorship W1973295658A5005797102 @default.
- W1973295658 hasAuthorship W1973295658A5038455774 @default.
- W1973295658 hasAuthorship W1973295658A5054005081 @default.
- W1973295658 hasAuthorship W1973295658A5075986365 @default.
- W1973295658 hasAuthorship W1973295658A5077468851 @default.
- W1973295658 hasAuthorship W1973295658A5080248000 @default.
- W1973295658 hasConcept C105795698 @default.
- W1973295658 hasConcept C119857082 @default.
- W1973295658 hasConcept C134306372 @default.
- W1973295658 hasConcept C134463574 @default.
- W1973295658 hasConcept C138187205 @default.
- W1973295658 hasConcept C138885662 @default.
- W1973295658 hasConcept C159985019 @default.
- W1973295658 hasConcept C180016635 @default.
- W1973295658 hasConcept C184389593 @default.
- W1973295658 hasConcept C192562407 @default.
- W1973295658 hasConcept C195065555 @default.
- W1973295658 hasConcept C21036866 @default.
- W1973295658 hasConcept C2524010 @default.
- W1973295658 hasConcept C33923547 @default.
- W1973295658 hasConcept C41008148 @default.
- W1973295658 hasConcept C41895202 @default.
- W1973295658 hasConcept C50644808 @default.
- W1973295658 hasConcept C74545648 @default.
- W1973295658 hasConcept C81388566 @default.
- W1973295658 hasConcept C90119067 @default.
- W1973295658 hasConceptScore W1973295658C105795698 @default.
- W1973295658 hasConceptScore W1973295658C119857082 @default.
- W1973295658 hasConceptScore W1973295658C134306372 @default.
- W1973295658 hasConceptScore W1973295658C134463574 @default.
- W1973295658 hasConceptScore W1973295658C138187205 @default.
- W1973295658 hasConceptScore W1973295658C138885662 @default.
- W1973295658 hasConceptScore W1973295658C159985019 @default.
- W1973295658 hasConceptScore W1973295658C180016635 @default.
- W1973295658 hasConceptScore W1973295658C184389593 @default.
- W1973295658 hasConceptScore W1973295658C192562407 @default.
- W1973295658 hasConceptScore W1973295658C195065555 @default.
- W1973295658 hasConceptScore W1973295658C21036866 @default.
- W1973295658 hasConceptScore W1973295658C2524010 @default.
- W1973295658 hasConceptScore W1973295658C33923547 @default.
- W1973295658 hasConceptScore W1973295658C41008148 @default.
- W1973295658 hasConceptScore W1973295658C41895202 @default.
- W1973295658 hasConceptScore W1973295658C50644808 @default.
- W1973295658 hasConceptScore W1973295658C74545648 @default.
- W1973295658 hasConceptScore W1973295658C81388566 @default.
- W1973295658 hasConceptScore W1973295658C90119067 @default.
- W1973295658 hasIssue "1" @default.
- W1973295658 hasLocation W19732956581 @default.
- W1973295658 hasOpenAccess W1973295658 @default.
- W1973295658 hasPrimaryLocation W19732956581 @default.
- W1973295658 hasRelatedWork W1973917753 @default.
- W1973295658 hasRelatedWork W2013485381 @default.
- W1973295658 hasRelatedWork W2160008951 @default.
- W1973295658 hasRelatedWork W2950412270 @default.