Matches in SemOpenAlex for { <https://semopenalex.org/work/W1973432172> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W1973432172 endingPage "85" @default.
- W1973432172 startingPage "77" @default.
- W1973432172 abstract "자동사고검지 알고리즘의 대부분은 사고가 발생했을 때 사고로 검지하지 못하고, 혼잡으로 검지하는 경우가 많다는 문제점을 가지고 있다. 또한 교통정보센터 운영자들은 교통사고검지시스템을 운영하면서 대부분 CCTV 육안감시 또는 운전자들의 신고에 의존하여 사고처리를 하고 있는 실정이다. 그 이유는 현재 운영되고 있는 교통사고검지시스템에서는 실제 사고가 아닌데도 불구하고, 사고라는 오검지 경고가 많이 발생되어 시스템 전체의 신뢰도가 떨어진다는 문제점이 있기 때문이다. 다시 말해 교통사고검지시스템의 알고리즘은 검지율(Detection probability)이 높아야 함과 동시에, 오검지율(False alarm probability)은 낮아야 하고, 정확한 사고지점과 시간을 검지해 낼 수 있어야 한다. 이에 본 연구는 검지율을 높이고 동시에, 오검지율을 낮추는 방법으로 기 개발된 가우시안 혼합모델(Gaussian Mixture Model)과 개별차량 Tracking을 이용하여 개발한 사고검지 알고리즘을 교통정보센터 관리시스템(Center Management System)에 적용하고, 실제 교통상황에서 사고검지율과 오검지의 빈도를 측정하여 그 효과를 검증 및 평가하고자 한다. Most of Automatic Accident Detection Algorithm has a problem of detecting an accident as traffic congestion. Actually, center's managers deal with accidents depend on watching CCTV or accident report by drivers even though they run the Automatic Accident Detection system. It is because of the system's detecting errors such as detecting non-accidents as accidents, and it makes decreasing in the system's overall reliability. It means that Automatic Accident Detection Algorithm should not only have high detection probability but also have low false alarm probability, and it has to detect accurate accident spot. The study tries to verify and evaluate the effectiveness of using Gaussian Mixture Model and individual vehicle tracking to adapt Accident Detection Algorithm to Center Management System by measuring accident detection probability and false alarm probability's frequency in the real accident." @default.
- W1973432172 created "2016-06-24" @default.
- W1973432172 creator A5016356072 @default.
- W1973432172 creator A5083221080 @default.
- W1973432172 date "2012-06-15" @default.
- W1973432172 modified "2023-09-26" @default.
- W1973432172 title "Measuring of Effectiveness of Tracking Based Accident Detection Algorithm Using Gaussian Mixture Model" @default.
- W1973432172 doi "https://doi.org/10.7855/ijhe.2012.14.3.077" @default.
- W1973432172 hasPublicationYear "2012" @default.
- W1973432172 type Work @default.
- W1973432172 sameAs 1973432172 @default.
- W1973432172 citedByCount "0" @default.
- W1973432172 crossrefType "journal-article" @default.
- W1973432172 hasAuthorship W1973432172A5016356072 @default.
- W1973432172 hasAuthorship W1973432172A5083221080 @default.
- W1973432172 hasBestOaLocation W19734321721 @default.
- W1973432172 hasConcept C105795698 @default.
- W1973432172 hasConcept C111472728 @default.
- W1973432172 hasConcept C11413529 @default.
- W1973432172 hasConcept C121332964 @default.
- W1973432172 hasConcept C127413603 @default.
- W1973432172 hasConcept C138885662 @default.
- W1973432172 hasConcept C146978453 @default.
- W1973432172 hasConcept C154945302 @default.
- W1973432172 hasConcept C15744967 @default.
- W1973432172 hasConcept C163258240 @default.
- W1973432172 hasConcept C19417346 @default.
- W1973432172 hasConcept C2775936607 @default.
- W1973432172 hasConcept C2776836416 @default.
- W1973432172 hasConcept C2779119184 @default.
- W1973432172 hasConcept C2780289543 @default.
- W1973432172 hasConcept C2984179964 @default.
- W1973432172 hasConcept C33923547 @default.
- W1973432172 hasConcept C41008148 @default.
- W1973432172 hasConcept C43214815 @default.
- W1973432172 hasConcept C61224824 @default.
- W1973432172 hasConcept C62520636 @default.
- W1973432172 hasConcept C77052588 @default.
- W1973432172 hasConcept C79403827 @default.
- W1973432172 hasConceptScore W1973432172C105795698 @default.
- W1973432172 hasConceptScore W1973432172C111472728 @default.
- W1973432172 hasConceptScore W1973432172C11413529 @default.
- W1973432172 hasConceptScore W1973432172C121332964 @default.
- W1973432172 hasConceptScore W1973432172C127413603 @default.
- W1973432172 hasConceptScore W1973432172C138885662 @default.
- W1973432172 hasConceptScore W1973432172C146978453 @default.
- W1973432172 hasConceptScore W1973432172C154945302 @default.
- W1973432172 hasConceptScore W1973432172C15744967 @default.
- W1973432172 hasConceptScore W1973432172C163258240 @default.
- W1973432172 hasConceptScore W1973432172C19417346 @default.
- W1973432172 hasConceptScore W1973432172C2775936607 @default.
- W1973432172 hasConceptScore W1973432172C2776836416 @default.
- W1973432172 hasConceptScore W1973432172C2779119184 @default.
- W1973432172 hasConceptScore W1973432172C2780289543 @default.
- W1973432172 hasConceptScore W1973432172C2984179964 @default.
- W1973432172 hasConceptScore W1973432172C33923547 @default.
- W1973432172 hasConceptScore W1973432172C41008148 @default.
- W1973432172 hasConceptScore W1973432172C43214815 @default.
- W1973432172 hasConceptScore W1973432172C61224824 @default.
- W1973432172 hasConceptScore W1973432172C62520636 @default.
- W1973432172 hasConceptScore W1973432172C77052588 @default.
- W1973432172 hasConceptScore W1973432172C79403827 @default.
- W1973432172 hasIssue "3" @default.
- W1973432172 hasLocation W19734321721 @default.
- W1973432172 hasOpenAccess W1973432172 @default.
- W1973432172 hasPrimaryLocation W19734321721 @default.
- W1973432172 hasRelatedWork W1487460017 @default.
- W1973432172 hasRelatedWork W1973432172 @default.
- W1973432172 hasRelatedWork W2087335459 @default.
- W1973432172 hasRelatedWork W2111344067 @default.
- W1973432172 hasRelatedWork W2126906346 @default.
- W1973432172 hasRelatedWork W2167026961 @default.
- W1973432172 hasRelatedWork W2373552149 @default.
- W1973432172 hasRelatedWork W2388226588 @default.
- W1973432172 hasRelatedWork W3181836960 @default.
- W1973432172 hasRelatedWork W654712357 @default.
- W1973432172 hasVolume "14" @default.
- W1973432172 isParatext "false" @default.
- W1973432172 isRetracted "false" @default.
- W1973432172 magId "1973432172" @default.
- W1973432172 workType "article" @default.