Matches in SemOpenAlex for { <https://semopenalex.org/work/W1973755560> ?p ?o ?g. }
- W1973755560 endingPage "239" @default.
- W1973755560 startingPage "225" @default.
- W1973755560 abstract "In the present paper, a state-of-the-art machine learning based modeling formalism known as “support vector regression (SVR)”, has been introduced for the soft-sensor applications in the fed-batch processes. The SVR method possesses a number of attractive properties such as a strong statistical basis, convergence to the unique global minimum and an improved generalization performance by the approximated function. Also, the structure and parameters of an SVR model can be interpreted in terms of the training data. The efficacy of the SVR formalism for the soft-sensor development task has been demonstrated by considering two simulated bio-processes namely, invertase and streptokinase. Additionally, the performance of the SVR based soft-sensors is rigorously compared with those developed using the multilayer perceptron and radial basis function neural networks. The results presented here clearly indicate that the SVR is an attractive alternative to artificial neural networks for the development of soft-sensors in bioprocesses." @default.
- W1973755560 created "2016-06-24" @default.
- W1973755560 creator A5009945109 @default.
- W1973755560 creator A5063771906 @default.
- W1973755560 creator A5065908843 @default.
- W1973755560 creator A5067826619 @default.
- W1973755560 date "2006-01-01" @default.
- W1973755560 modified "2023-10-16" @default.
- W1973755560 title "Soft-sensor development for fed-batch bioreactors using support vector regression" @default.
- W1973755560 cites W1498436455 @default.
- W1973755560 cites W1964620203 @default.
- W1973755560 cites W1965401750 @default.
- W1973755560 cites W1987320850 @default.
- W1973755560 cites W1994535861 @default.
- W1973755560 cites W1996327915 @default.
- W1973755560 cites W1999115523 @default.
- W1973755560 cites W2001188747 @default.
- W1973755560 cites W2002686276 @default.
- W1973755560 cites W2007154098 @default.
- W1973755560 cites W2011068535 @default.
- W1973755560 cites W2011559247 @default.
- W1973755560 cites W2029771080 @default.
- W1973755560 cites W2045655093 @default.
- W1973755560 cites W2046698703 @default.
- W1973755560 cites W2048896776 @default.
- W1973755560 cites W2055238536 @default.
- W1973755560 cites W2061393420 @default.
- W1973755560 cites W2067338244 @default.
- W1973755560 cites W2070578527 @default.
- W1973755560 cites W2075664172 @default.
- W1973755560 cites W2087483267 @default.
- W1973755560 cites W2098337683 @default.
- W1973755560 cites W2104717843 @default.
- W1973755560 cites W2110652811 @default.
- W1973755560 cites W2115439273 @default.
- W1973755560 cites W2116680463 @default.
- W1973755560 cites W2124220997 @default.
- W1973755560 cites W2132870739 @default.
- W1973755560 cites W2139212933 @default.
- W1973755560 cites W2141916341 @default.
- W1973755560 cites W2142196360 @default.
- W1973755560 cites W2149681371 @default.
- W1973755560 cites W2155399784 @default.
- W1973755560 cites W2158994553 @default.
- W1973755560 cites W2168156818 @default.
- W1973755560 cites W2168993425 @default.
- W1973755560 cites W2170993095 @default.
- W1973755560 cites W2171277043 @default.
- W1973755560 cites W2342586194 @default.
- W1973755560 doi "https://doi.org/10.1016/j.bej.2005.08.002" @default.
- W1973755560 hasPublicationYear "2006" @default.
- W1973755560 type Work @default.
- W1973755560 sameAs 1973755560 @default.
- W1973755560 citedByCount "134" @default.
- W1973755560 countsByYear W19737555602012 @default.
- W1973755560 countsByYear W19737555602013 @default.
- W1973755560 countsByYear W19737555602014 @default.
- W1973755560 countsByYear W19737555602015 @default.
- W1973755560 countsByYear W19737555602016 @default.
- W1973755560 countsByYear W19737555602017 @default.
- W1973755560 countsByYear W19737555602018 @default.
- W1973755560 countsByYear W19737555602019 @default.
- W1973755560 countsByYear W19737555602020 @default.
- W1973755560 countsByYear W19737555602021 @default.
- W1973755560 countsByYear W19737555602022 @default.
- W1973755560 countsByYear W19737555602023 @default.
- W1973755560 crossrefType "journal-article" @default.
- W1973755560 hasAuthorship W1973755560A5009945109 @default.
- W1973755560 hasAuthorship W1973755560A5063771906 @default.
- W1973755560 hasAuthorship W1973755560A5065908843 @default.
- W1973755560 hasAuthorship W1973755560A5067826619 @default.
- W1973755560 hasConcept C105795698 @default.
- W1973755560 hasConcept C111919701 @default.
- W1973755560 hasConcept C115575686 @default.
- W1973755560 hasConcept C119857082 @default.
- W1973755560 hasConcept C12267149 @default.
- W1973755560 hasConcept C134306372 @default.
- W1973755560 hasConcept C153180895 @default.
- W1973755560 hasConcept C154945302 @default.
- W1973755560 hasConcept C177148314 @default.
- W1973755560 hasConcept C179717631 @default.
- W1973755560 hasConcept C186060115 @default.
- W1973755560 hasConcept C33923547 @default.
- W1973755560 hasConcept C41008148 @default.
- W1973755560 hasConcept C50644808 @default.
- W1973755560 hasConcept C60908668 @default.
- W1973755560 hasConcept C83546350 @default.
- W1973755560 hasConcept C86803240 @default.
- W1973755560 hasConcept C98045186 @default.
- W1973755560 hasConcept C98856871 @default.
- W1973755560 hasConceptScore W1973755560C105795698 @default.
- W1973755560 hasConceptScore W1973755560C111919701 @default.
- W1973755560 hasConceptScore W1973755560C115575686 @default.
- W1973755560 hasConceptScore W1973755560C119857082 @default.
- W1973755560 hasConceptScore W1973755560C12267149 @default.
- W1973755560 hasConceptScore W1973755560C134306372 @default.
- W1973755560 hasConceptScore W1973755560C153180895 @default.
- W1973755560 hasConceptScore W1973755560C154945302 @default.