Matches in SemOpenAlex for { <https://semopenalex.org/work/W1974075563> ?p ?o ?g. }
- W1974075563 endingPage "1070" @default.
- W1974075563 startingPage "1057" @default.
- W1974075563 abstract "This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature." @default.
- W1974075563 created "2016-06-24" @default.
- W1974075563 creator A5019822433 @default.
- W1974075563 creator A5062349545 @default.
- W1974075563 creator A5089633849 @default.
- W1974075563 date "2006-09-01" @default.
- W1974075563 modified "2023-10-12" @default.
- W1974075563 title "Optimization of constrained multiple-objective reliability problems using evolutionary algorithms" @default.
- W1974075563 cites W1563728692 @default.
- W1974075563 cites W1965918351 @default.
- W1974075563 cites W1967280379 @default.
- W1974075563 cites W1972091512 @default.
- W1974075563 cites W1982802563 @default.
- W1974075563 cites W2010681943 @default.
- W1974075563 cites W2014846325 @default.
- W1974075563 cites W2020941735 @default.
- W1974075563 cites W2030004976 @default.
- W1974075563 cites W2036202715 @default.
- W1974075563 cites W2040032204 @default.
- W1974075563 cites W2042665078 @default.
- W1974075563 cites W2044858688 @default.
- W1974075563 cites W2052179756 @default.
- W1974075563 cites W2053900989 @default.
- W1974075563 cites W2075169987 @default.
- W1974075563 cites W2076501149 @default.
- W1974075563 cites W2084288583 @default.
- W1974075563 cites W2106334424 @default.
- W1974075563 cites W2109202810 @default.
- W1974075563 cites W2114621702 @default.
- W1974075563 cites W2115685920 @default.
- W1974075563 cites W2116661285 @default.
- W1974075563 cites W2116827549 @default.
- W1974075563 cites W2129734500 @default.
- W1974075563 cites W2156297386 @default.
- W1974075563 cites W2161851867 @default.
- W1974075563 cites W2165046421 @default.
- W1974075563 cites W2167580870 @default.
- W1974075563 cites W4251195984 @default.
- W1974075563 doi "https://doi.org/10.1016/j.ress.2005.11.040" @default.
- W1974075563 hasPublicationYear "2006" @default.
- W1974075563 type Work @default.
- W1974075563 sameAs 1974075563 @default.
- W1974075563 citedByCount "133" @default.
- W1974075563 countsByYear W19740755632012 @default.
- W1974075563 countsByYear W19740755632013 @default.
- W1974075563 countsByYear W19740755632014 @default.
- W1974075563 countsByYear W19740755632015 @default.
- W1974075563 countsByYear W19740755632016 @default.
- W1974075563 countsByYear W19740755632017 @default.
- W1974075563 countsByYear W19740755632018 @default.
- W1974075563 countsByYear W19740755632019 @default.
- W1974075563 countsByYear W19740755632020 @default.
- W1974075563 countsByYear W19740755632021 @default.
- W1974075563 countsByYear W19740755632022 @default.
- W1974075563 countsByYear W19740755632023 @default.
- W1974075563 crossrefType "journal-article" @default.
- W1974075563 hasAuthorship W1974075563A5019822433 @default.
- W1974075563 hasAuthorship W1974075563A5062349545 @default.
- W1974075563 hasAuthorship W1974075563A5089633849 @default.
- W1974075563 hasConcept C111919701 @default.
- W1974075563 hasConcept C11413529 @default.
- W1974075563 hasConcept C121332964 @default.
- W1974075563 hasConcept C126255220 @default.
- W1974075563 hasConcept C127705205 @default.
- W1974075563 hasConcept C137836250 @default.
- W1974075563 hasConcept C152124472 @default.
- W1974075563 hasConcept C159149176 @default.
- W1974075563 hasConcept C163258240 @default.
- W1974075563 hasConcept C177264268 @default.
- W1974075563 hasConcept C199360897 @default.
- W1974075563 hasConcept C2986314615 @default.
- W1974075563 hasConcept C33923547 @default.
- W1974075563 hasConcept C41008148 @default.
- W1974075563 hasConcept C41045048 @default.
- W1974075563 hasConcept C43214815 @default.
- W1974075563 hasConcept C56086750 @default.
- W1974075563 hasConcept C62520636 @default.
- W1974075563 hasConcept C68781425 @default.
- W1974075563 hasConceptScore W1974075563C111919701 @default.
- W1974075563 hasConceptScore W1974075563C11413529 @default.
- W1974075563 hasConceptScore W1974075563C121332964 @default.
- W1974075563 hasConceptScore W1974075563C126255220 @default.
- W1974075563 hasConceptScore W1974075563C127705205 @default.
- W1974075563 hasConceptScore W1974075563C137836250 @default.
- W1974075563 hasConceptScore W1974075563C152124472 @default.
- W1974075563 hasConceptScore W1974075563C159149176 @default.
- W1974075563 hasConceptScore W1974075563C163258240 @default.
- W1974075563 hasConceptScore W1974075563C177264268 @default.
- W1974075563 hasConceptScore W1974075563C199360897 @default.
- W1974075563 hasConceptScore W1974075563C2986314615 @default.
- W1974075563 hasConceptScore W1974075563C33923547 @default.
- W1974075563 hasConceptScore W1974075563C41008148 @default.
- W1974075563 hasConceptScore W1974075563C41045048 @default.
- W1974075563 hasConceptScore W1974075563C43214815 @default.
- W1974075563 hasConceptScore W1974075563C56086750 @default.
- W1974075563 hasConceptScore W1974075563C62520636 @default.
- W1974075563 hasConceptScore W1974075563C68781425 @default.
- W1974075563 hasIssue "9" @default.