Matches in SemOpenAlex for { <https://semopenalex.org/work/W1974368122> ?p ?o ?g. }
- W1974368122 endingPage "1286" @default.
- W1974368122 startingPage "1278" @default.
- W1974368122 abstract "Nonnegative matrix factorization (NMF), a popular part-based representation technique, does not capture the intrinsic local geometric structure of the data space. Graph regularized NMF (GNMF) was recently proposed to avoid this limitation by regularizing NMF with a nearest neighbor graph constructed from the input data set. However, GNMF has two main bottlenecks. First, using the original feature space directly to construct the graph is not necessarily optimal because of the noisy and irrelevant features and nonlinear distributions of data samples. Second, one possible way to handle the nonlinear distribution of data samples is by kernel embedding. However, it is often difficult to choose the most suitable kernel. To solve these bottlenecks, we propose two novel graph-regularized NMF methods, AGNMFFS and AGNMFMK, by introducing feature selection and multiple-kernel learning to the graph regularized NMF, respectively. Instead of using a fixed graph as in GNMF, the two proposed methods learn the nearest neighbor graph that is adaptive to the selected features and learned multiple kernels, respectively. For each method, we propose a unified objective function to conduct feature selection/multi-kernel learning, NMF and adaptive graph regularization simultaneously. We further develop two iterative algorithms to solve the two optimization problems. Experimental results on two challenging pattern classification tasks demonstrate that the proposed methods significantly outperform state-of-the-art data representation methods." @default.
- W1974368122 created "2016-06-24" @default.
- W1974368122 creator A5009607229 @default.
- W1974368122 creator A5009642414 @default.
- W1974368122 creator A5039662308 @default.
- W1974368122 creator A5039919016 @default.
- W1974368122 date "2015-02-01" @default.
- W1974368122 modified "2023-09-24" @default.
- W1974368122 title "Feature selection and multi-kernel learning for adaptive graph regularized nonnegative matrix factorization" @default.
- W1974368122 cites W1968580628 @default.
- W1974368122 cites W1973416045 @default.
- W1974368122 cites W1973775644 @default.
- W1974368122 cites W1977020089 @default.
- W1974368122 cites W1988581925 @default.
- W1974368122 cites W1993395332 @default.
- W1974368122 cites W1994251758 @default.
- W1974368122 cites W2000070202 @default.
- W1974368122 cites W2003620172 @default.
- W1974368122 cites W2005443451 @default.
- W1974368122 cites W2015605478 @default.
- W1974368122 cites W2021283385 @default.
- W1974368122 cites W2022479703 @default.
- W1974368122 cites W2029927832 @default.
- W1974368122 cites W2044163719 @default.
- W1974368122 cites W2044468884 @default.
- W1974368122 cites W2058419406 @default.
- W1974368122 cites W2064219748 @default.
- W1974368122 cites W2064422318 @default.
- W1974368122 cites W2066592057 @default.
- W1974368122 cites W2066995518 @default.
- W1974368122 cites W2072810883 @default.
- W1974368122 cites W2085313571 @default.
- W1974368122 cites W2090152127 @default.
- W1974368122 cites W2108119513 @default.
- W1974368122 cites W2114701495 @default.
- W1974368122 cites W2126963364 @default.
- W1974368122 cites W2134601979 @default.
- W1974368122 cites W2138243884 @default.
- W1974368122 cites W2142859223 @default.
- W1974368122 cites W2148418595 @default.
- W1974368122 cites W2148830179 @default.
- W1974368122 cites W2164040150 @default.
- W1974368122 cites W2168784386 @default.
- W1974368122 cites W2963615142 @default.
- W1974368122 cites W3099511899 @default.
- W1974368122 doi "https://doi.org/10.1016/j.eswa.2014.09.008" @default.
- W1974368122 hasPublicationYear "2015" @default.
- W1974368122 type Work @default.
- W1974368122 sameAs 1974368122 @default.
- W1974368122 citedByCount "35" @default.
- W1974368122 countsByYear W19743681222014 @default.
- W1974368122 countsByYear W19743681222015 @default.
- W1974368122 countsByYear W19743681222016 @default.
- W1974368122 countsByYear W19743681222017 @default.
- W1974368122 countsByYear W19743681222018 @default.
- W1974368122 countsByYear W19743681222019 @default.
- W1974368122 countsByYear W19743681222021 @default.
- W1974368122 countsByYear W19743681222022 @default.
- W1974368122 countsByYear W19743681222023 @default.
- W1974368122 crossrefType "journal-article" @default.
- W1974368122 hasAuthorship W1974368122A5009607229 @default.
- W1974368122 hasAuthorship W1974368122A5009642414 @default.
- W1974368122 hasAuthorship W1974368122A5039662308 @default.
- W1974368122 hasAuthorship W1974368122A5039919016 @default.
- W1974368122 hasBestOaLocation W19743681221 @default.
- W1974368122 hasConcept C100595998 @default.
- W1974368122 hasConcept C113238511 @default.
- W1974368122 hasConcept C114614502 @default.
- W1974368122 hasConcept C121332964 @default.
- W1974368122 hasConcept C122280245 @default.
- W1974368122 hasConcept C12267149 @default.
- W1974368122 hasConcept C132525143 @default.
- W1974368122 hasConcept C134517425 @default.
- W1974368122 hasConcept C148483581 @default.
- W1974368122 hasConcept C152671427 @default.
- W1974368122 hasConcept C153180895 @default.
- W1974368122 hasConcept C154945302 @default.
- W1974368122 hasConcept C158693339 @default.
- W1974368122 hasConcept C33923547 @default.
- W1974368122 hasConcept C41008148 @default.
- W1974368122 hasConcept C41608201 @default.
- W1974368122 hasConcept C42355184 @default.
- W1974368122 hasConcept C59404180 @default.
- W1974368122 hasConcept C62520636 @default.
- W1974368122 hasConcept C74193536 @default.
- W1974368122 hasConcept C75564084 @default.
- W1974368122 hasConcept C80444323 @default.
- W1974368122 hasConcept C83665646 @default.
- W1974368122 hasConceptScore W1974368122C100595998 @default.
- W1974368122 hasConceptScore W1974368122C113238511 @default.
- W1974368122 hasConceptScore W1974368122C114614502 @default.
- W1974368122 hasConceptScore W1974368122C121332964 @default.
- W1974368122 hasConceptScore W1974368122C122280245 @default.
- W1974368122 hasConceptScore W1974368122C12267149 @default.
- W1974368122 hasConceptScore W1974368122C132525143 @default.
- W1974368122 hasConceptScore W1974368122C134517425 @default.
- W1974368122 hasConceptScore W1974368122C148483581 @default.
- W1974368122 hasConceptScore W1974368122C152671427 @default.