Matches in SemOpenAlex for { <https://semopenalex.org/work/W1974536722> ?p ?o ?g. }
- W1974536722 endingPage "1289" @default.
- W1974536722 startingPage "1275" @default.
- W1974536722 abstract "In this paper, we propose an unsupervised salient object segmentation approach based on kernel density estimation (KDE) and two-phase graph cut. A set of KDE models are first constructed based on the pre-segmentation result of the input image, and then for each pixel, a set of likelihoods to fit all KDE models are calculated accordingly. The color saliency and spatial saliency of each KDE model are then evaluated based on its color distinctiveness and spatial distribution, and the pixel-wise saliency map is generated by integrating likelihood measures of pixels and saliency measures of KDE models. In the first phase of salient object segmentation, the saliency map based graph cut is exploited to obtain an initial segmentation result. In the second phase, the segmentation is further refined based on an iterative seed adjustment method, which efficiently utilizes the information of minimum cut generated using the KDE model based graph cut, and exploits a balancing weight update scheme for convergence of segmentation refinement. Experimental results on a dataset containing 1000 test images with ground truths demonstrate the better segmentation performance of our approach." @default.
- W1974536722 created "2016-06-24" @default.
- W1974536722 creator A5013324006 @default.
- W1974536722 creator A5040009629 @default.
- W1974536722 creator A5045476577 @default.
- W1974536722 creator A5048268082 @default.
- W1974536722 creator A5062332580 @default.
- W1974536722 creator A5074436126 @default.
- W1974536722 date "2012-08-01" @default.
- W1974536722 modified "2023-09-25" @default.
- W1974536722 title "Unsupervised Salient Object Segmentation Based on Kernel Density Estimation and Two-Phase Graph Cut" @default.
- W1974536722 cites W2007534788 @default.
- W1974536722 cites W2028099788 @default.
- W1974536722 cites W2035593355 @default.
- W1974536722 cites W2037954058 @default.
- W1974536722 cites W2046863527 @default.
- W1974536722 cites W2067191022 @default.
- W1974536722 cites W2068194118 @default.
- W1974536722 cites W2078132377 @default.
- W1974536722 cites W2098702446 @default.
- W1974536722 cites W2100470808 @default.
- W1974536722 cites W2113137767 @default.
- W1974536722 cites W2115004357 @default.
- W1974536722 cites W2118143383 @default.
- W1974536722 cites W2119300483 @default.
- W1974536722 cites W2122465129 @default.
- W1974536722 cites W2125647562 @default.
- W1974536722 cites W2128272608 @default.
- W1974536722 cites W2128446554 @default.
- W1974536722 cites W2130147475 @default.
- W1974536722 cites W2133589685 @default.
- W1974536722 cites W2139772777 @default.
- W1974536722 cites W2140231476 @default.
- W1974536722 cites W2140695456 @default.
- W1974536722 cites W2144954512 @default.
- W1974536722 cites W2146103513 @default.
- W1974536722 cites W2149095485 @default.
- W1974536722 cites W2157554677 @default.
- W1974536722 cites W2158104279 @default.
- W1974536722 cites W2158987471 @default.
- W1974536722 cites W2162558265 @default.
- W1974536722 cites W2167403408 @default.
- W1974536722 cites W2169041475 @default.
- W1974536722 cites W2170181714 @default.
- W1974536722 cites W2170425671 @default.
- W1974536722 cites W3125696298 @default.
- W1974536722 doi "https://doi.org/10.1109/tmm.2012.2190385" @default.
- W1974536722 hasPublicationYear "2012" @default.
- W1974536722 type Work @default.
- W1974536722 sameAs 1974536722 @default.
- W1974536722 citedByCount "124" @default.
- W1974536722 countsByYear W19745367222013 @default.
- W1974536722 countsByYear W19745367222014 @default.
- W1974536722 countsByYear W19745367222015 @default.
- W1974536722 countsByYear W19745367222016 @default.
- W1974536722 countsByYear W19745367222017 @default.
- W1974536722 countsByYear W19745367222018 @default.
- W1974536722 countsByYear W19745367222019 @default.
- W1974536722 countsByYear W19745367222020 @default.
- W1974536722 countsByYear W19745367222021 @default.
- W1974536722 countsByYear W19745367222022 @default.
- W1974536722 countsByYear W19745367222023 @default.
- W1974536722 crossrefType "journal-article" @default.
- W1974536722 hasAuthorship W1974536722A5013324006 @default.
- W1974536722 hasAuthorship W1974536722A5040009629 @default.
- W1974536722 hasAuthorship W1974536722A5045476577 @default.
- W1974536722 hasAuthorship W1974536722A5048268082 @default.
- W1974536722 hasAuthorship W1974536722A5062332580 @default.
- W1974536722 hasAuthorship W1974536722A5074436126 @default.
- W1974536722 hasBestOaLocation W19745367222 @default.
- W1974536722 hasConcept C105795698 @default.
- W1974536722 hasConcept C114614502 @default.
- W1974536722 hasConcept C124504099 @default.
- W1974536722 hasConcept C132525143 @default.
- W1974536722 hasConcept C153180895 @default.
- W1974536722 hasConcept C154945302 @default.
- W1974536722 hasConcept C160633673 @default.
- W1974536722 hasConcept C185429906 @default.
- W1974536722 hasConcept C25694479 @default.
- W1974536722 hasConcept C31972630 @default.
- W1974536722 hasConcept C33923547 @default.
- W1974536722 hasConcept C41008148 @default.
- W1974536722 hasConcept C5134670 @default.
- W1974536722 hasConcept C65885262 @default.
- W1974536722 hasConcept C67561299 @default.
- W1974536722 hasConcept C71134354 @default.
- W1974536722 hasConcept C74193536 @default.
- W1974536722 hasConcept C80444323 @default.
- W1974536722 hasConcept C89600930 @default.
- W1974536722 hasConceptScore W1974536722C105795698 @default.
- W1974536722 hasConceptScore W1974536722C114614502 @default.
- W1974536722 hasConceptScore W1974536722C124504099 @default.
- W1974536722 hasConceptScore W1974536722C132525143 @default.
- W1974536722 hasConceptScore W1974536722C153180895 @default.
- W1974536722 hasConceptScore W1974536722C154945302 @default.
- W1974536722 hasConceptScore W1974536722C160633673 @default.
- W1974536722 hasConceptScore W1974536722C185429906 @default.
- W1974536722 hasConceptScore W1974536722C25694479 @default.