Matches in SemOpenAlex for { <https://semopenalex.org/work/W1974722997> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W1974722997 abstract "Problem: This work systematically investigates the effectiveness of various visual feature coding schemes for facilitating the learning of timedelayed dependencies among disjoint multi-camera views. Related work: Quite a few studies [3, 4, 6] have been proposed to model inter-camera dependency across non-overlapping camera views. Learning time-delayed correlations among disjoint cameras in crowded public scenarios is a non-trivial task: (1) the time gaps between camera views are unknown therefore activities in two related views may occur at arbitrary time delays with high uncertainty; (2) the features are inevitably noisy, ambiguous, and may vary drastically across views owning to illumination condition, camera angles, and changes in object pose. Most state-ofthe-art methods typically hand pick a few features tailored to the target environment, with the hope that those chosen features contain robust and sufficient statistics for correlating the time-delayed activity patterns across disjoint views. These manual approaches to hard selection of features are neither principled nor generalisable to different scene context. Our solution: In this study, we wish to examine the concept that visual features should be coded and selected automatically for robust and accurate time-delayed dependency learning. The contributions of this study are two-fold: (1) We present a systematic study and evaluation to investigate the effectiveness of supervised and unsupervised feature coding methods to facilitate the learning of inter-camera activity pattern dependencies. (2) We systematically evaluate the sensitivity of inter-camera time delayed dependency learning given different training video sizes and region decomposition qualities. These factors are critical for accurate dependency learning but have been largely ignored by the published existing work in the literature. Approach overview: We employ the Random Forest [2] as the supervised feature coding approach. In particular, given a set of localised features extracted from a region, together with people count training label over time, we first train a regression forest to learn the non-linear mapping between the crowd density and the corresponding low-level features. Given unseen data, we then construct a time series based on the predicted crowd density ŷ obtained from the regression forest (RF pred), the treestructured code (tree code) [5], or the combination of the two. As for unsupervised coding scheme, we use the Latent Dirichlet Allocation (LDA) [1] to map the low-level features into codewords that capture the topic distribution, whereby an image region patch (document) d is treated as a collection of j = 1 . . .Ni features (words). To form the unsupervised feature codes, given a sequence of localised feature vectors detected from a region, we first perform quantisation on each feature to generate a bag-of-word representation for all image patches. Similar to text documents, these bag-of-word represented image patches are fed into the LDA, which gives us a topic-based representation. Once having the topic-based code (topic code), we perform k-means quantisation on them, producing the final compact topic-based code, and concatenate them over time to form a time series. To solve the problem of using the feature codes for learning intercamera dependencies, we adopt the Time Delayed Mutual Information (TDMI) proposed in [3] due to its reported effectiveness and simplicity. The input to TDMI are time series generated from either the supervised or the unsupervised coding scheme. In addition to measuring deviation error in transition time, we propose a new metrics to evaluate the effectiveness of different coding methods, called Mutual Information Margin (MIM):" @default.
- W1974722997 created "2016-06-24" @default.
- W1974722997 creator A5005626854 @default.
- W1974722997 creator A5028643592 @default.
- W1974722997 creator A5039302902 @default.
- W1974722997 date "2012-01-01" @default.
- W1974722997 modified "2023-10-17" @default.
- W1974722997 title "Comparing Visual Feature Coding for Learning Disjoint Camera Dependencies" @default.
- W1974722997 cites W1484228140 @default.
- W1974722997 cites W1598578845 @default.
- W1974722997 cites W1625255723 @default.
- W1974722997 cites W1880262756 @default.
- W1974722997 cites W1970571562 @default.
- W1974722997 cites W1979838576 @default.
- W1974722997 cites W1983120804 @default.
- W1974722997 cites W2040395913 @default.
- W1974722997 cites W2067288219 @default.
- W1974722997 cites W2097018403 @default.
- W1974722997 cites W2104170135 @default.
- W1974722997 cites W2105604990 @default.
- W1974722997 cites W2107034620 @default.
- W1974722997 cites W2112204123 @default.
- W1974722997 cites W2113590123 @default.
- W1974722997 cites W2115569382 @default.
- W1974722997 cites W2120662407 @default.
- W1974722997 cites W2123175289 @default.
- W1974722997 cites W2126141220 @default.
- W1974722997 cites W2126829907 @default.
- W1974722997 cites W2129759623 @default.
- W1974722997 cites W2131846894 @default.
- W1974722997 cites W2132315307 @default.
- W1974722997 cites W2134270519 @default.
- W1974722997 cites W2134927309 @default.
- W1974722997 cites W2145983039 @default.
- W1974722997 cites W2147615062 @default.
- W1974722997 cites W2149167202 @default.
- W1974722997 cites W2151065677 @default.
- W1974722997 cites W2151259137 @default.
- W1974722997 cites W2154301842 @default.
- W1974722997 cites W2163352848 @default.
- W1974722997 cites W2165609887 @default.
- W1974722997 cites W2166583862 @default.
- W1974722997 cites W2911964244 @default.
- W1974722997 doi "https://doi.org/10.5244/c.26.94" @default.
- W1974722997 hasPublicationYear "2012" @default.
- W1974722997 type Work @default.
- W1974722997 sameAs 1974722997 @default.
- W1974722997 citedByCount "3" @default.
- W1974722997 countsByYear W19747229972013 @default.
- W1974722997 countsByYear W19747229972014 @default.
- W1974722997 countsByYear W19747229972017 @default.
- W1974722997 crossrefType "proceedings-article" @default.
- W1974722997 hasAuthorship W1974722997A5005626854 @default.
- W1974722997 hasAuthorship W1974722997A5028643592 @default.
- W1974722997 hasAuthorship W1974722997A5039302902 @default.
- W1974722997 hasBestOaLocation W19747229971 @default.
- W1974722997 hasConcept C105795698 @default.
- W1974722997 hasConcept C114614502 @default.
- W1974722997 hasConcept C138885662 @default.
- W1974722997 hasConcept C153180895 @default.
- W1974722997 hasConcept C154945302 @default.
- W1974722997 hasConcept C179518139 @default.
- W1974722997 hasConcept C2776401178 @default.
- W1974722997 hasConcept C31972630 @default.
- W1974722997 hasConcept C33923547 @default.
- W1974722997 hasConcept C41008148 @default.
- W1974722997 hasConcept C41895202 @default.
- W1974722997 hasConcept C45340560 @default.
- W1974722997 hasConceptScore W1974722997C105795698 @default.
- W1974722997 hasConceptScore W1974722997C114614502 @default.
- W1974722997 hasConceptScore W1974722997C138885662 @default.
- W1974722997 hasConceptScore W1974722997C153180895 @default.
- W1974722997 hasConceptScore W1974722997C154945302 @default.
- W1974722997 hasConceptScore W1974722997C179518139 @default.
- W1974722997 hasConceptScore W1974722997C2776401178 @default.
- W1974722997 hasConceptScore W1974722997C31972630 @default.
- W1974722997 hasConceptScore W1974722997C33923547 @default.
- W1974722997 hasConceptScore W1974722997C41008148 @default.
- W1974722997 hasConceptScore W1974722997C41895202 @default.
- W1974722997 hasConceptScore W1974722997C45340560 @default.
- W1974722997 hasLocation W19747229971 @default.
- W1974722997 hasOpenAccess W1974722997 @default.
- W1974722997 hasPrimaryLocation W19747229971 @default.
- W1974722997 hasRelatedWork W1504288058 @default.
- W1974722997 hasRelatedWork W2017205855 @default.
- W1974722997 hasRelatedWork W2031347084 @default.
- W1974722997 hasRelatedWork W2048505601 @default.
- W1974722997 hasRelatedWork W2167293474 @default.
- W1974722997 hasRelatedWork W2331674254 @default.
- W1974722997 hasRelatedWork W2358403311 @default.
- W1974722997 hasRelatedWork W2922188210 @default.
- W1974722997 hasRelatedWork W2979079341 @default.
- W1974722997 hasRelatedWork W3042897387 @default.
- W1974722997 isParatext "false" @default.
- W1974722997 isRetracted "false" @default.
- W1974722997 magId "1974722997" @default.
- W1974722997 workType "article" @default.