Matches in SemOpenAlex for { <https://semopenalex.org/work/W1974804886> ?p ?o ?g. }
- W1974804886 endingPage "322" @default.
- W1974804886 startingPage "313" @default.
- W1974804886 abstract "Back-propagation artificial neural networks (BP-ANN) are applied for modeling hydroxyl number and acid value of a set of 62 samples of polyester resins from their near infrared (NIR) spectra. The results are compared to the classical calibration approaches, i.e. principal component regression (PCR) and partial least squares (PLS). The set of available samples is split into: (i) a training set, for models calculation; (ii) a test set, for setting the correct number of latent variables in PCR and PLS and for selecting the end point of the training phase of BP-ANN; (iii) a “production set” of samples, which are predicted to evaluate the models predictive ability. This approach guarantees that the predictive ability of the models is evaluated by genuine predictions. BP-ANN resulted always better than the classical PCR and PLS, from the point of view of the predictive ability. The study of the breakdown number of experiments to include in the training set showed instead that this factor does influence PCR and PLS at a lesser degree than what happens for BP-ANN. The latter approach requires a larger number of experiments for obtaining good results. The choice of optimal training sets is efficiently performed by Kohonen self-organizing maps (SOMs). It can be concluded that FT-NIR spectroscopy and BP-ANN models can be properly employed for monitoring the polyesterification of dicarboxylic acids with diols by predicting the acid and hydroxyl numbers directly along the process line." @default.
- W1974804886 created "2016-06-24" @default.
- W1974804886 creator A5007761699 @default.
- W1974804886 creator A5019772553 @default.
- W1974804886 creator A5074811469 @default.
- W1974804886 creator A5076763698 @default.
- W1974804886 date "2004-05-01" @default.
- W1974804886 modified "2023-09-23" @default.
- W1974804886 title "Hydroxyl and acid number prediction in polyester resins by near infrared spectroscopy and artificial neural networks" @default.
- W1974804886 cites W1964715098 @default.
- W1974804886 cites W1978968421 @default.
- W1974804886 cites W1980499438 @default.
- W1974804886 cites W1982100258 @default.
- W1974804886 cites W1984016719 @default.
- W1974804886 cites W1989423297 @default.
- W1974804886 cites W1996371767 @default.
- W1974804886 cites W2003756933 @default.
- W1974804886 cites W2013153034 @default.
- W1974804886 cites W2021873216 @default.
- W1974804886 cites W2021988396 @default.
- W1974804886 cites W2022492778 @default.
- W1974804886 cites W2023326421 @default.
- W1974804886 cites W2025039909 @default.
- W1974804886 cites W2030963731 @default.
- W1974804886 cites W2038536621 @default.
- W1974804886 cites W2043076340 @default.
- W1974804886 cites W2067374641 @default.
- W1974804886 cites W2075793373 @default.
- W1974804886 cites W2083088490 @default.
- W1974804886 cites W2083153570 @default.
- W1974804886 cites W2085401964 @default.
- W1974804886 cites W2086824189 @default.
- W1974804886 cites W2088462268 @default.
- W1974804886 cites W2089468765 @default.
- W1974804886 cites W2096043274 @default.
- W1974804886 cites W2158863190 @default.
- W1974804886 cites W24821413 @default.
- W1974804886 doi "https://doi.org/10.1016/j.aca.2004.01.053" @default.
- W1974804886 hasPublicationYear "2004" @default.
- W1974804886 type Work @default.
- W1974804886 sameAs 1974804886 @default.
- W1974804886 citedByCount "40" @default.
- W1974804886 countsByYear W19748048862012 @default.
- W1974804886 countsByYear W19748048862013 @default.
- W1974804886 countsByYear W19748048862014 @default.
- W1974804886 countsByYear W19748048862015 @default.
- W1974804886 countsByYear W19748048862016 @default.
- W1974804886 countsByYear W19748048862017 @default.
- W1974804886 countsByYear W19748048862019 @default.
- W1974804886 countsByYear W19748048862020 @default.
- W1974804886 countsByYear W19748048862021 @default.
- W1974804886 crossrefType "journal-article" @default.
- W1974804886 hasAuthorship W1974804886A5007761699 @default.
- W1974804886 hasAuthorship W1974804886A5019772553 @default.
- W1974804886 hasAuthorship W1974804886A5074811469 @default.
- W1974804886 hasAuthorship W1974804886A5076763698 @default.
- W1974804886 hasConcept C105795698 @default.
- W1974804886 hasConcept C119394753 @default.
- W1974804886 hasConcept C119857082 @default.
- W1974804886 hasConcept C121332964 @default.
- W1974804886 hasConcept C151304367 @default.
- W1974804886 hasConcept C154945302 @default.
- W1974804886 hasConcept C155032097 @default.
- W1974804886 hasConcept C164126121 @default.
- W1974804886 hasConcept C165838908 @default.
- W1974804886 hasConcept C169903167 @default.
- W1974804886 hasConcept C177264268 @default.
- W1974804886 hasConcept C178790620 @default.
- W1974804886 hasConcept C185592680 @default.
- W1974804886 hasConcept C186060115 @default.
- W1974804886 hasConcept C199360897 @default.
- W1974804886 hasConcept C22354355 @default.
- W1974804886 hasConcept C27438332 @default.
- W1974804886 hasConcept C32891209 @default.
- W1974804886 hasConcept C33923547 @default.
- W1974804886 hasConcept C41008148 @default.
- W1974804886 hasConcept C43571822 @default.
- W1974804886 hasConcept C43617362 @default.
- W1974804886 hasConcept C50644808 @default.
- W1974804886 hasConcept C51167844 @default.
- W1974804886 hasConcept C51632099 @default.
- W1974804886 hasConcept C58489278 @default.
- W1974804886 hasConcept C62520636 @default.
- W1974804886 hasConcept C71240020 @default.
- W1974804886 hasConcept C86803240 @default.
- W1974804886 hasConceptScore W1974804886C105795698 @default.
- W1974804886 hasConceptScore W1974804886C119394753 @default.
- W1974804886 hasConceptScore W1974804886C119857082 @default.
- W1974804886 hasConceptScore W1974804886C121332964 @default.
- W1974804886 hasConceptScore W1974804886C151304367 @default.
- W1974804886 hasConceptScore W1974804886C154945302 @default.
- W1974804886 hasConceptScore W1974804886C155032097 @default.
- W1974804886 hasConceptScore W1974804886C164126121 @default.
- W1974804886 hasConceptScore W1974804886C165838908 @default.
- W1974804886 hasConceptScore W1974804886C169903167 @default.
- W1974804886 hasConceptScore W1974804886C177264268 @default.
- W1974804886 hasConceptScore W1974804886C178790620 @default.
- W1974804886 hasConceptScore W1974804886C185592680 @default.