Matches in SemOpenAlex for { <https://semopenalex.org/work/W1974855100> ?p ?o ?g. }
- W1974855100 endingPage "487" @default.
- W1974855100 startingPage "473" @default.
- W1974855100 abstract "The drive to miniaturize devices has led to a variety of molecular machines inspired by macroscopic counterparts such as molecular motors, switches, shuttles, turnstiles, barrows, elevators, and nanovehicles. Such nanomachines are designed for controlled mechanical motion and the transport of nanocargo. As researchers miniaturize devices, they can consider two complementary approaches: (1) the “top-down” approach, which reduces the size of macroscopic objects to reach an equivalent microscopic entity using photolithography and related techniques and (2) the “bottom-up” approach, which builds functional microscopic or nanoscopic entities from molecular building blocks. The top-down approach, extensively used by the semiconductor industry, is nearing its scaling limits. On the other hand, the bottom-up approach takes advantage of the self-assembly of smaller molecules into larger networks by exploiting typically weak molecular interactions. But self-assembly alone will not permit complex assembly. Using nanomachines, we hope to eventually consider complex, enzyme-like directed assembly. With that ultimate goal, we are currently exploring the control of nanomachines that would provide a basis for the future bottom-up construction of complex systems. This Account describes the synthesis of a class of molecular machines that resemble macroscopic vehicles. We designed these so-called nanocars for study at the single-molecule level by scanning probe microscopy (SPM). The vehicles have a chassis connected to wheel-terminated axles and convert energy inputs such as heat, electric fields, or light into controlled motion on a surface, ultimately leading to transport of nanocargo. At first, we used C60 fullerenes as wheels, which allowed the demonstration of a directional rolling mechanism of a nanocar on a gold surface by STM. However, because of the low solubility of the fullerene nanocars and the incompatibility of fullerenes with photochemical processes, we developed new p-carborane- and ruthenium-based wheels with greater solubility in organic solvents. Although fullerene wheels must be attached in the final synthetic step, p-carborane- and ruthenium-based wheels do not inhibit organometallic coupling reactions, which allows a more convergent synthesis of molecular machines. We also prepared functional nanotrucks for the transport of atoms and molecules, as well as self-assembling nanocars and nanotrains. Although engineering challenges such as movement over long distance and non-atomically flat surfaces remain, the greatest current research challenge is imaging. The detailed study of nanocars requires complementary single molecule imaging techniques such as STM, AFM, TEM, or single-molecule fluorescence microscopy. Further developments in engineering and synthesis could lead to enzyme-like manipulation and assembly of atoms and small molecules in nonbiological environments." @default.
- W1974855100 created "2016-06-24" @default.
- W1974855100 creator A5056053028 @default.
- W1974855100 creator A5071067488 @default.
- W1974855100 date "2009-02-27" @default.
- W1974855100 modified "2023-10-01" @default.
- W1974855100 title "Synthesis of Single-Molecule Nanocars" @default.
- W1974855100 cites W1559264985 @default.
- W1974855100 cites W165799539 @default.
- W1974855100 cites W1658488588 @default.
- W1974855100 cites W1908322794 @default.
- W1974855100 cites W1965493817 @default.
- W1974855100 cites W1968134425 @default.
- W1974855100 cites W1974031889 @default.
- W1974855100 cites W1976453340 @default.
- W1974855100 cites W1977373193 @default.
- W1974855100 cites W1981649928 @default.
- W1974855100 cites W1982104633 @default.
- W1974855100 cites W1985378488 @default.
- W1974855100 cites W1986371999 @default.
- W1974855100 cites W1989013147 @default.
- W1974855100 cites W1989578084 @default.
- W1974855100 cites W1993297113 @default.
- W1974855100 cites W1999779407 @default.
- W1974855100 cites W2000694289 @default.
- W1974855100 cites W2004116821 @default.
- W1974855100 cites W2005288482 @default.
- W1974855100 cites W2008491262 @default.
- W1974855100 cites W2013188768 @default.
- W1974855100 cites W2029904934 @default.
- W1974855100 cites W2032308275 @default.
- W1974855100 cites W2041560104 @default.
- W1974855100 cites W2050874779 @default.
- W1974855100 cites W2053424532 @default.
- W1974855100 cites W2053960384 @default.
- W1974855100 cites W2060582186 @default.
- W1974855100 cites W2064786293 @default.
- W1974855100 cites W2064866349 @default.
- W1974855100 cites W2064968791 @default.
- W1974855100 cites W2065355407 @default.
- W1974855100 cites W2067049601 @default.
- W1974855100 cites W2068733903 @default.
- W1974855100 cites W2069483502 @default.
- W1974855100 cites W2075741273 @default.
- W1974855100 cites W2076710572 @default.
- W1974855100 cites W2082622391 @default.
- W1974855100 cites W2088851009 @default.
- W1974855100 cites W2089184024 @default.
- W1974855100 cites W2092097750 @default.
- W1974855100 cites W2098282761 @default.
- W1974855100 cites W2099392831 @default.
- W1974855100 cites W2103390877 @default.
- W1974855100 cites W2112228116 @default.
- W1974855100 cites W2113014755 @default.
- W1974855100 cites W2128492772 @default.
- W1974855100 cites W2130976075 @default.
- W1974855100 cites W2135865322 @default.
- W1974855100 cites W2146747142 @default.
- W1974855100 cites W2147440332 @default.
- W1974855100 cites W2153509349 @default.
- W1974855100 cites W2154395440 @default.
- W1974855100 cites W2156100614 @default.
- W1974855100 cites W2172287039 @default.
- W1974855100 cites W2949437940 @default.
- W1974855100 cites W2951476987 @default.
- W1974855100 cites W4256166569 @default.
- W1974855100 cites W4299125157 @default.
- W1974855100 doi "https://doi.org/10.1021/ar8002317" @default.
- W1974855100 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19245268" @default.
- W1974855100 hasPublicationYear "2009" @default.
- W1974855100 type Work @default.
- W1974855100 sameAs 1974855100 @default.
- W1974855100 citedByCount "191" @default.
- W1974855100 countsByYear W19748551002012 @default.
- W1974855100 countsByYear W19748551002013 @default.
- W1974855100 countsByYear W19748551002014 @default.
- W1974855100 countsByYear W19748551002015 @default.
- W1974855100 countsByYear W19748551002016 @default.
- W1974855100 countsByYear W19748551002017 @default.
- W1974855100 countsByYear W19748551002018 @default.
- W1974855100 countsByYear W19748551002019 @default.
- W1974855100 countsByYear W19748551002020 @default.
- W1974855100 countsByYear W19748551002021 @default.
- W1974855100 countsByYear W19748551002022 @default.
- W1974855100 countsByYear W19748551002023 @default.
- W1974855100 crossrefType "journal-article" @default.
- W1974855100 hasAuthorship W1974855100A5056053028 @default.
- W1974855100 hasAuthorship W1974855100A5071067488 @default.
- W1974855100 hasConcept C121332964 @default.
- W1974855100 hasConcept C121897927 @default.
- W1974855100 hasConcept C123057669 @default.
- W1974855100 hasConcept C127413603 @default.
- W1974855100 hasConcept C139425391 @default.
- W1974855100 hasConcept C160408235 @default.
- W1974855100 hasConcept C171250308 @default.
- W1974855100 hasConcept C192562407 @default.
- W1974855100 hasConcept C32909587 @default.
- W1974855100 hasConcept C41008148 @default.