Matches in SemOpenAlex for { <https://semopenalex.org/work/W1974883251> ?p ?o ?g. }
- W1974883251 endingPage "107" @default.
- W1974883251 startingPage "95" @default.
- W1974883251 abstract "The high number of false positives and the resulting number of avoidable breast biopsies are the major problems faced by current mammography Computer Aided Detection (CAD) systems. False positive reduction is not only a requirement for mass but also for calcification CAD systems which are currently deployed for clinical use. This paper tackles two problems related to reducing the number of false positives in the detection of all lesions and masses, respectively. Firstly, textural patterns of breast tissue have been analyzed using several multi-scale textural descriptors based on wavelet and gray level co-occurrence matrix. The second problem addressed in this paper is the parameter selection and performance optimization. For this, we adopt a model selection procedure based on Particle Swarm Optimization (PSO) for selecting the most discriminative textural features and for strengthening the generalization capacity of the supervised learning stage based on a Support Vector Machine (SVM) classifier. For evaluating the proposed methods, two sets of suspicious mammogram regions have been used. The first one, obtained from Digital Database for Screening Mammography (DDSM), contains 1494 regions (1000 normal and 494 abnormal samples). The second set of suspicious regions was obtained from database of Mammographic Image Analysis Society (mini-MIAS) and contains 315 (207 normal and 108 abnormal) samples. Results from both datasets demonstrate the efficiency of using PSO based model selection for optimizing both classifier hyper-parameters and parameters, respectively. Furthermore, the obtained results indicate the promising performance of the proposed textural features and more specifically, those based on co-occurrence matrix of wavelet image representation technique." @default.
- W1974883251 created "2016-06-24" @default.
- W1974883251 creator A5019225526 @default.
- W1974883251 creator A5037990310 @default.
- W1974883251 creator A5057388161 @default.
- W1974883251 date "2015-12-01" @default.
- W1974883251 modified "2023-09-26" @default.
- W1974883251 title "Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography" @default.
- W1974883251 cites W1979010656 @default.
- W1974883251 cites W1986280275 @default.
- W1974883251 cites W1986923534 @default.
- W1974883251 cites W1995346442 @default.
- W1974883251 cites W2004536721 @default.
- W1974883251 cites W2006630906 @default.
- W1974883251 cites W2012010855 @default.
- W1974883251 cites W2015356304 @default.
- W1974883251 cites W2044465660 @default.
- W1974883251 cites W2056555375 @default.
- W1974883251 cites W2059115408 @default.
- W1974883251 cites W2061345601 @default.
- W1974883251 cites W2076360002 @default.
- W1974883251 cites W2083886673 @default.
- W1974883251 cites W2085132317 @default.
- W1974883251 cites W2098914003 @default.
- W1974883251 cites W2101771332 @default.
- W1974883251 cites W2108009806 @default.
- W1974883251 cites W2113048934 @default.
- W1974883251 cites W2132984323 @default.
- W1974883251 cites W2139428734 @default.
- W1974883251 cites W2152690055 @default.
- W1974883251 cites W2153448337 @default.
- W1974883251 cites W2157069634 @default.
- W1974883251 cites W2163913032 @default.
- W1974883251 cites W2167000802 @default.
- W1974883251 cites W2168953255 @default.
- W1974883251 cites W4239510810 @default.
- W1974883251 doi "https://doi.org/10.1016/j.compmedimag.2015.02.005" @default.
- W1974883251 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25795630" @default.
- W1974883251 hasPublicationYear "2015" @default.
- W1974883251 type Work @default.
- W1974883251 sameAs 1974883251 @default.
- W1974883251 citedByCount "37" @default.
- W1974883251 countsByYear W19748832512015 @default.
- W1974883251 countsByYear W19748832512016 @default.
- W1974883251 countsByYear W19748832512017 @default.
- W1974883251 countsByYear W19748832512018 @default.
- W1974883251 countsByYear W19748832512019 @default.
- W1974883251 countsByYear W19748832512020 @default.
- W1974883251 countsByYear W19748832512021 @default.
- W1974883251 countsByYear W19748832512022 @default.
- W1974883251 countsByYear W19748832512023 @default.
- W1974883251 crossrefType "journal-article" @default.
- W1974883251 hasAuthorship W1974883251A5019225526 @default.
- W1974883251 hasAuthorship W1974883251A5037990310 @default.
- W1974883251 hasAuthorship W1974883251A5057388161 @default.
- W1974883251 hasConcept C119857082 @default.
- W1974883251 hasConcept C121608353 @default.
- W1974883251 hasConcept C12267149 @default.
- W1974883251 hasConcept C126322002 @default.
- W1974883251 hasConcept C127413603 @default.
- W1974883251 hasConcept C148483581 @default.
- W1974883251 hasConcept C153180895 @default.
- W1974883251 hasConcept C154945302 @default.
- W1974883251 hasConcept C194789388 @default.
- W1974883251 hasConcept C199639397 @default.
- W1974883251 hasConcept C2780472235 @default.
- W1974883251 hasConcept C2781281974 @default.
- W1974883251 hasConcept C41008148 @default.
- W1974883251 hasConcept C47432892 @default.
- W1974883251 hasConcept C530470458 @default.
- W1974883251 hasConcept C64869954 @default.
- W1974883251 hasConcept C71924100 @default.
- W1974883251 hasConcept C85617194 @default.
- W1974883251 hasConcept C95623464 @default.
- W1974883251 hasConcept C97931131 @default.
- W1974883251 hasConceptScore W1974883251C119857082 @default.
- W1974883251 hasConceptScore W1974883251C121608353 @default.
- W1974883251 hasConceptScore W1974883251C12267149 @default.
- W1974883251 hasConceptScore W1974883251C126322002 @default.
- W1974883251 hasConceptScore W1974883251C127413603 @default.
- W1974883251 hasConceptScore W1974883251C148483581 @default.
- W1974883251 hasConceptScore W1974883251C153180895 @default.
- W1974883251 hasConceptScore W1974883251C154945302 @default.
- W1974883251 hasConceptScore W1974883251C194789388 @default.
- W1974883251 hasConceptScore W1974883251C199639397 @default.
- W1974883251 hasConceptScore W1974883251C2780472235 @default.
- W1974883251 hasConceptScore W1974883251C2781281974 @default.
- W1974883251 hasConceptScore W1974883251C41008148 @default.
- W1974883251 hasConceptScore W1974883251C47432892 @default.
- W1974883251 hasConceptScore W1974883251C530470458 @default.
- W1974883251 hasConceptScore W1974883251C64869954 @default.
- W1974883251 hasConceptScore W1974883251C71924100 @default.
- W1974883251 hasConceptScore W1974883251C85617194 @default.
- W1974883251 hasConceptScore W1974883251C95623464 @default.
- W1974883251 hasConceptScore W1974883251C97931131 @default.
- W1974883251 hasLocation W19748832511 @default.
- W1974883251 hasLocation W19748832512 @default.
- W1974883251 hasOpenAccess W1974883251 @default.