Matches in SemOpenAlex for { <https://semopenalex.org/work/W1974980064> ?p ?o ?g. }
- W1974980064 endingPage "147" @default.
- W1974980064 startingPage "142" @default.
- W1974980064 abstract "Informative variable (or wavelength) selection plays an important role in quantitative analysis by visible and near-infrared (Vis–NIR) spectroscopy. Four different variable selection methods, namely, stepwise multiple linear regression (SMLR), genetic algorithm-partial least squares regression (GA-PLS), interval PLS (iPLS), and successive projection algorithm-multiple linear regression combined with GA (GA-SPA-MLR), were studied to determine the sugar content of pears. The results derived by these techniques were then compared. The calibration model built using GA-SPA-MLR on 18 selected wavelengths (2% of the total number of variables) exhibited higher coefficient of determination (R2) = 0.880 and root mean square error of prediction (RMSEP) = 0.459°Brix for the validation set. Results show that the accuracy of the quantitative analysis conducted by Vis–NIR spectroscopy can be improved through appropriate wavelength selection. Despite the RMSEP value of GA-SPA-MLR was a slightly higher than that of GA-PLS, considering that this model was simpler and easier to interpret, GA-SPA-MLR can be used for industrial applications." @default.
- W1974980064 created "2016-06-24" @default.
- W1974980064 creator A5014990227 @default.
- W1974980064 creator A5029467943 @default.
- W1974980064 creator A5079327872 @default.
- W1974980064 creator A5080948922 @default.
- W1974980064 creator A5083868441 @default.
- W1974980064 date "2012-03-01" @default.
- W1974980064 modified "2023-10-16" @default.
- W1974980064 title "Variable selection in visible and near-infrared spectra: Application to on-line determination of sugar content in pears" @default.
- W1974980064 cites W168518945 @default.
- W1974980064 cites W1968871527 @default.
- W1974980064 cites W1974619943 @default.
- W1974980064 cites W1978184510 @default.
- W1974980064 cites W1978214896 @default.
- W1974980064 cites W1978955435 @default.
- W1974980064 cites W1980237945 @default.
- W1974980064 cites W1982755765 @default.
- W1974980064 cites W1997057412 @default.
- W1974980064 cites W2006035356 @default.
- W1974980064 cites W2007808016 @default.
- W1974980064 cites W2008421044 @default.
- W1974980064 cites W2015870870 @default.
- W1974980064 cites W2018606140 @default.
- W1974980064 cites W2020306636 @default.
- W1974980064 cites W2028787786 @default.
- W1974980064 cites W2031241066 @default.
- W1974980064 cites W2031335397 @default.
- W1974980064 cites W2037226761 @default.
- W1974980064 cites W2040104179 @default.
- W1974980064 cites W2041846054 @default.
- W1974980064 cites W2051944536 @default.
- W1974980064 cites W2056181481 @default.
- W1974980064 cites W2063392525 @default.
- W1974980064 cites W2064152727 @default.
- W1974980064 cites W2072391527 @default.
- W1974980064 cites W2080623760 @default.
- W1974980064 cites W2081061395 @default.
- W1974980064 cites W2083861988 @default.
- W1974980064 cites W2084649778 @default.
- W1974980064 cites W2086936642 @default.
- W1974980064 cites W2089199691 @default.
- W1974980064 cites W2139862721 @default.
- W1974980064 cites W2148028862 @default.
- W1974980064 cites W2161271796 @default.
- W1974980064 cites W3192310 @default.
- W1974980064 cites W2977758237 @default.
- W1974980064 doi "https://doi.org/10.1016/j.jfoodeng.2011.09.022" @default.
- W1974980064 hasPublicationYear "2012" @default.
- W1974980064 type Work @default.
- W1974980064 sameAs 1974980064 @default.
- W1974980064 citedByCount "101" @default.
- W1974980064 countsByYear W19749800642013 @default.
- W1974980064 countsByYear W19749800642014 @default.
- W1974980064 countsByYear W19749800642015 @default.
- W1974980064 countsByYear W19749800642016 @default.
- W1974980064 countsByYear W19749800642017 @default.
- W1974980064 countsByYear W19749800642018 @default.
- W1974980064 countsByYear W19749800642019 @default.
- W1974980064 countsByYear W19749800642020 @default.
- W1974980064 countsByYear W19749800642021 @default.
- W1974980064 countsByYear W19749800642022 @default.
- W1974980064 countsByYear W19749800642023 @default.
- W1974980064 crossrefType "journal-article" @default.
- W1974980064 hasAuthorship W1974980064A5014990227 @default.
- W1974980064 hasAuthorship W1974980064A5029467943 @default.
- W1974980064 hasAuthorship W1974980064A5079327872 @default.
- W1974980064 hasAuthorship W1974980064A5080948922 @default.
- W1974980064 hasAuthorship W1974980064A5083868441 @default.
- W1974980064 hasConcept C105795698 @default.
- W1974980064 hasConcept C113196181 @default.
- W1974980064 hasConcept C120665830 @default.
- W1974980064 hasConcept C121332964 @default.
- W1974980064 hasConcept C128990827 @default.
- W1974980064 hasConcept C134306372 @default.
- W1974980064 hasConcept C139945424 @default.
- W1974980064 hasConcept C148483581 @default.
- W1974980064 hasConcept C151304367 @default.
- W1974980064 hasConcept C152877465 @default.
- W1974980064 hasConcept C154945302 @default.
- W1974980064 hasConcept C165838908 @default.
- W1974980064 hasConcept C169272836 @default.
- W1974980064 hasConcept C185592680 @default.
- W1974980064 hasConcept C22354355 @default.
- W1974980064 hasConcept C2776214188 @default.
- W1974980064 hasConcept C2777108408 @default.
- W1974980064 hasConcept C2778152352 @default.
- W1974980064 hasConcept C31903555 @default.
- W1974980064 hasConcept C33923547 @default.
- W1974980064 hasConcept C41008148 @default.
- W1974980064 hasConcept C43571822 @default.
- W1974980064 hasConcept C43617362 @default.
- W1974980064 hasConcept C47452053 @default.
- W1974980064 hasConcept C48921125 @default.
- W1974980064 hasConceptScore W1974980064C105795698 @default.
- W1974980064 hasConceptScore W1974980064C113196181 @default.
- W1974980064 hasConceptScore W1974980064C120665830 @default.
- W1974980064 hasConceptScore W1974980064C121332964 @default.