Matches in SemOpenAlex for { <https://semopenalex.org/work/W1975065031> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W1975065031 endingPage "658" @default.
- W1975065031 startingPage "644" @default.
- W1975065031 abstract "PDF HTML阅读 XML下载 导出引用 引用提醒 基于小波概要的并行数据流聚类 DOI: 作者: 作者单位: 作者简介: 通讯作者: 中图分类号: 基金项目: Supported by the National Natural Science Foundation of China under Grant Nos.60803021, 60973047 (国家自然科学基金); the Zhejiang Provincial Natural Science Foundation of China under Grant No.Y1091189 (浙江省自然科学基金); the Ningbo Municipal Natural Science Foundation of China under Grant Nos.2007A610007, 2009A610072 (宁波市自然科学基金) Wavelet Synopsis Based Clustering of Parallel Data Streams Author: Affiliation: Fund Project: 摘要 | 图/表 | 访问统计 | 参考文献 | 相似文献 | 引证文献 | 资源附件 | 文章评论 摘要:许多应用中会连续不断产生大量随时间演变的序列型数据,构成时间序列数据流,如传感器网络、实时股票行情、网络及通信监控等场合.聚类是分析这类并行多数据流的一种有力工具.但数据流长度无限、随时间演变和大数据量的特点,使得传统的聚类方法无法直接应用.利用数据流的遗忘特性,应用离散小波变换,分层、动态地维护每个数据流的概要结构.基于该概要结构,快速计算数据流与聚类中心之间的近似距离,实现了一种适合并行多数据流的K-means聚类方法.所进行的实验验证了该聚类方法的有效性. Abstract:In many real-life applications, such as stock markets, network monitoring, and sensor networks, data are modeled as dynamic evolving time series which is continuous and unbounded in nature, and many such data streams concur usually. Clustering is useful in analyzing such paralleled data streams. This paper is interested in grouping these evolving data streams. For this purpose, a synopsis is maintained dynamically for each data stream. The construction of the synopsis is based on Discrete Wavelet Transform and utilizes the amnesic feature of data stream. By using the synopsis, a fast computation of approximate distances between streams and the cluster center can be implemented, and an efficient online version of the classical K-means clustering algorithm is developed. Experiments have proved the effectiveness of the proposed method. 参考文献 相似文献 引证文献" @default.
- W1975065031 created "2016-06-24" @default.
- W1975065031 creator A5000619568 @default.
- W1975065031 creator A5004090727 @default.
- W1975065031 creator A5004828717 @default.
- W1975065031 creator A5077493861 @default.
- W1975065031 date "2010-03-11" @default.
- W1975065031 modified "2023-09-23" @default.
- W1975065031 title "Wavelet Synopsis Based Clustering of Parallel Data Streams" @default.
- W1975065031 cites W1853995153 @default.
- W1975065031 cites W1965456679 @default.
- W1975065031 cites W2123297508 @default.
- W1975065031 cites W2134017119 @default.
- W1975065031 cites W2162008374 @default.
- W1975065031 doi "https://doi.org/10.3724/sp.j.1001.2010.03570" @default.
- W1975065031 hasPublicationYear "2010" @default.
- W1975065031 type Work @default.
- W1975065031 sameAs 1975065031 @default.
- W1975065031 citedByCount "5" @default.
- W1975065031 countsByYear W19750650312012 @default.
- W1975065031 countsByYear W19750650312013 @default.
- W1975065031 countsByYear W19750650312014 @default.
- W1975065031 countsByYear W19750650312022 @default.
- W1975065031 crossrefType "journal-article" @default.
- W1975065031 hasAuthorship W1975065031A5000619568 @default.
- W1975065031 hasAuthorship W1975065031A5004090727 @default.
- W1975065031 hasAuthorship W1975065031A5004828717 @default.
- W1975065031 hasAuthorship W1975065031A5077493861 @default.
- W1975065031 hasBestOaLocation W19750650311 @default.
- W1975065031 hasConcept C124101348 @default.
- W1975065031 hasConcept C136764020 @default.
- W1975065031 hasConcept C154945302 @default.
- W1975065031 hasConcept C17212007 @default.
- W1975065031 hasConcept C193143536 @default.
- W1975065031 hasConcept C2778484313 @default.
- W1975065031 hasConcept C31258907 @default.
- W1975065031 hasConcept C33704608 @default.
- W1975065031 hasConcept C41008148 @default.
- W1975065031 hasConcept C42090638 @default.
- W1975065031 hasConcept C47432892 @default.
- W1975065031 hasConcept C73555534 @default.
- W1975065031 hasConcept C76155785 @default.
- W1975065031 hasConcept C8797682 @default.
- W1975065031 hasConcept C89198739 @default.
- W1975065031 hasConceptScore W1975065031C124101348 @default.
- W1975065031 hasConceptScore W1975065031C136764020 @default.
- W1975065031 hasConceptScore W1975065031C154945302 @default.
- W1975065031 hasConceptScore W1975065031C17212007 @default.
- W1975065031 hasConceptScore W1975065031C193143536 @default.
- W1975065031 hasConceptScore W1975065031C2778484313 @default.
- W1975065031 hasConceptScore W1975065031C31258907 @default.
- W1975065031 hasConceptScore W1975065031C33704608 @default.
- W1975065031 hasConceptScore W1975065031C41008148 @default.
- W1975065031 hasConceptScore W1975065031C42090638 @default.
- W1975065031 hasConceptScore W1975065031C47432892 @default.
- W1975065031 hasConceptScore W1975065031C73555534 @default.
- W1975065031 hasConceptScore W1975065031C76155785 @default.
- W1975065031 hasConceptScore W1975065031C8797682 @default.
- W1975065031 hasConceptScore W1975065031C89198739 @default.
- W1975065031 hasIssue "4" @default.
- W1975065031 hasLocation W19750650311 @default.
- W1975065031 hasOpenAccess W1975065031 @default.
- W1975065031 hasPrimaryLocation W19750650311 @default.
- W1975065031 hasRelatedWork W1583949593 @default.
- W1975065031 hasRelatedWork W1985618814 @default.
- W1975065031 hasRelatedWork W2014930958 @default.
- W1975065031 hasRelatedWork W2089616658 @default.
- W1975065031 hasRelatedWork W2360069064 @default.
- W1975065031 hasRelatedWork W2518466227 @default.
- W1975065031 hasRelatedWork W2783067857 @default.
- W1975065031 hasRelatedWork W3009866434 @default.
- W1975065031 hasRelatedWork W3104083384 @default.
- W1975065031 hasRelatedWork W3194653045 @default.
- W1975065031 hasVolume "21" @default.
- W1975065031 isParatext "false" @default.
- W1975065031 isRetracted "false" @default.
- W1975065031 magId "1975065031" @default.
- W1975065031 workType "article" @default.