Matches in SemOpenAlex for { <https://semopenalex.org/work/W1975704715> ?p ?o ?g. }
- W1975704715 endingPage "6946" @default.
- W1975704715 startingPage "6924" @default.
- W1975704715 abstract "Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson-Lucy algorithm." @default.
- W1975704715 created "2016-06-24" @default.
- W1975704715 creator A5027924825 @default.
- W1975704715 creator A5030290401 @default.
- W1975704715 creator A5033632697 @default.
- W1975704715 creator A5034477287 @default.
- W1975704715 creator A5084071291 @default.
- W1975704715 date "2015-03-23" @default.
- W1975704715 modified "2023-10-12" @default.
- W1975704715 title "Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar" @default.
- W1975704715 cites W1538767228 @default.
- W1975704715 cites W1972622093 @default.
- W1975704715 cites W1973207880 @default.
- W1975704715 cites W1980364018 @default.
- W1975704715 cites W1987057208 @default.
- W1975704715 cites W1991094628 @default.
- W1975704715 cites W2010639038 @default.
- W1975704715 cites W2013555205 @default.
- W1975704715 cites W2019737373 @default.
- W1975704715 cites W2040082897 @default.
- W1975704715 cites W2040319497 @default.
- W1975704715 cites W2041020993 @default.
- W1975704715 cites W2042637819 @default.
- W1975704715 cites W2044189242 @default.
- W1975704715 cites W2046731301 @default.
- W1975704715 cites W2049147119 @default.
- W1975704715 cites W2061577342 @default.
- W1975704715 cites W2062822407 @default.
- W1975704715 cites W2068859154 @default.
- W1975704715 cites W2071284784 @default.
- W1975704715 cites W2073879852 @default.
- W1975704715 cites W2088909704 @default.
- W1975704715 cites W2108855378 @default.
- W1975704715 cites W2115767635 @default.
- W1975704715 cites W2119716893 @default.
- W1975704715 cites W2124456241 @default.
- W1975704715 cites W2127721429 @default.
- W1975704715 cites W2127952006 @default.
- W1975704715 cites W2135073237 @default.
- W1975704715 cites W2136005975 @default.
- W1975704715 cites W2136035751 @default.
- W1975704715 cites W2143610686 @default.
- W1975704715 cites W2145250341 @default.
- W1975704715 cites W2148427957 @default.
- W1975704715 cites W2151458958 @default.
- W1975704715 cites W2155473288 @default.
- W1975704715 cites W2160708743 @default.
- W1975704715 cites W2168530812 @default.
- W1975704715 cites W2170608748 @default.
- W1975704715 doi "https://doi.org/10.3390/s150306924" @default.
- W1975704715 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4435177" @default.
- W1975704715 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25806871" @default.
- W1975704715 hasPublicationYear "2015" @default.
- W1975704715 type Work @default.
- W1975704715 sameAs 1975704715 @default.
- W1975704715 citedByCount "72" @default.
- W1975704715 countsByYear W19757047152015 @default.
- W1975704715 countsByYear W19757047152016 @default.
- W1975704715 countsByYear W19757047152017 @default.
- W1975704715 countsByYear W19757047152018 @default.
- W1975704715 countsByYear W19757047152019 @default.
- W1975704715 countsByYear W19757047152020 @default.
- W1975704715 countsByYear W19757047152021 @default.
- W1975704715 countsByYear W19757047152022 @default.
- W1975704715 countsByYear W19757047152023 @default.
- W1975704715 crossrefType "journal-article" @default.
- W1975704715 hasAuthorship W1975704715A5027924825 @default.
- W1975704715 hasAuthorship W1975704715A5030290401 @default.
- W1975704715 hasAuthorship W1975704715A5033632697 @default.
- W1975704715 hasAuthorship W1975704715A5034477287 @default.
- W1975704715 hasAuthorship W1975704715A5084071291 @default.
- W1975704715 hasBestOaLocation W19757047151 @default.
- W1975704715 hasConcept C11413529 @default.
- W1975704715 hasConcept C154945302 @default.
- W1975704715 hasConcept C174576160 @default.
- W1975704715 hasConcept C30044814 @default.
- W1975704715 hasConcept C31972630 @default.
- W1975704715 hasConcept C33923547 @default.
- W1975704715 hasConcept C41008148 @default.
- W1975704715 hasConcept C554190296 @default.
- W1975704715 hasConcept C76155785 @default.
- W1975704715 hasConceptScore W1975704715C11413529 @default.
- W1975704715 hasConceptScore W1975704715C154945302 @default.
- W1975704715 hasConceptScore W1975704715C174576160 @default.
- W1975704715 hasConceptScore W1975704715C30044814 @default.
- W1975704715 hasConceptScore W1975704715C31972630 @default.
- W1975704715 hasConceptScore W1975704715C33923547 @default.
- W1975704715 hasConceptScore W1975704715C41008148 @default.
- W1975704715 hasConceptScore W1975704715C554190296 @default.
- W1975704715 hasConceptScore W1975704715C76155785 @default.
- W1975704715 hasIssue "3" @default.
- W1975704715 hasLocation W19757047151 @default.
- W1975704715 hasLocation W19757047152 @default.
- W1975704715 hasLocation W19757047153 @default.
- W1975704715 hasLocation W19757047154 @default.
- W1975704715 hasLocation W19757047155 @default.
- W1975704715 hasOpenAccess W1975704715 @default.
- W1975704715 hasPrimaryLocation W19757047151 @default.