Matches in SemOpenAlex for { <https://semopenalex.org/work/W1975839640> ?p ?o ?g. }
- W1975839640 endingPage "93" @default.
- W1975839640 startingPage "80" @default.
- W1975839640 abstract "In this paper, three data-preprocessing techniques, moving average (MA), singular spectrum analysis (SSA), and wavelet multi-resolution analysis (WMRA), were coupled with artificial neural network (ANN) to improve the estimate of daily flows. Six models, including the original ANN model without data preprocessing, were set up and evaluated. Five new models were ANN-MA, ANN-SSA1, ANN-SSA2, ANN-WMRA1, and ANN-WMRA2. The ANN-MA was derived from the raw ANN model combined with the MA. The ANN-SSA1, ANN-SSA2, ANN-WMRA1 and ANN-WMRA2 were generated by using the original ANN model coupled with SSA and WMRA in terms of two different means. Two daily flow series from different watersheds in China (Lushui and Daning) were used in six models for three prediction horizons (i.e., 1-, 2-, and 3-day-ahead forecast). The poor performance on ANN forecast models was mainly due to the existence of the lagged prediction. The ANN-MA, among six models, performed best and eradicated the lag effect. The performances from the ANN-SSA1 and ANN-SSA2 were similar, and the performances from the ANN-WMRA1 and ANN-WMRA2 were also similar. However, the models based on the SSA presented better performance than the models based on the WMRA at all forecast horizons, which meant that the SSA is more effective than the WMRA in improving the ANN performance in the current study. Based on an overall consideration including the model performance and the complexity of modeling, the ANN-MA model was optimal, then the ANN model coupled with SSA, and finally the ANN model coupled with WMRA." @default.
- W1975839640 created "2016-06-24" @default.
- W1975839640 creator A5048610055 @default.
- W1975839640 creator A5075724317 @default.
- W1975839640 creator A5081904302 @default.
- W1975839640 date "2009-06-01" @default.
- W1975839640 modified "2023-10-06" @default.
- W1975839640 title "Methods to improve neural network performance in daily flows prediction" @default.
- W1975839640 cites W1543905881 @default.
- W1975839640 cites W1834484028 @default.
- W1975839640 cites W1922978183 @default.
- W1975839640 cites W1965295747 @default.
- W1975839640 cites W1974195979 @default.
- W1975839640 cites W1977556855 @default.
- W1975839640 cites W1986656491 @default.
- W1975839640 cites W1993967419 @default.
- W1975839640 cites W2004630602 @default.
- W1975839640 cites W2007396336 @default.
- W1975839640 cites W2009203913 @default.
- W1975839640 cites W2010551882 @default.
- W1975839640 cites W2024695206 @default.
- W1975839640 cites W2025110407 @default.
- W1975839640 cites W2025727209 @default.
- W1975839640 cites W2027547541 @default.
- W1975839640 cites W2029719981 @default.
- W1975839640 cites W2031365860 @default.
- W1975839640 cites W2033904036 @default.
- W1975839640 cites W2034099719 @default.
- W1975839640 cites W2034139177 @default.
- W1975839640 cites W2037460094 @default.
- W1975839640 cites W2040704490 @default.
- W1975839640 cites W2042985051 @default.
- W1975839640 cites W2044257293 @default.
- W1975839640 cites W2050063558 @default.
- W1975839640 cites W2073596094 @default.
- W1975839640 cites W2094447130 @default.
- W1975839640 cites W2104327430 @default.
- W1975839640 cites W2114824684 @default.
- W1975839640 cites W2131047005 @default.
- W1975839640 cites W2132984323 @default.
- W1975839640 cites W2171807302 @default.
- W1975839640 cites W3018770027 @default.
- W1975839640 doi "https://doi.org/10.1016/j.jhydrol.2009.03.038" @default.
- W1975839640 hasPublicationYear "2009" @default.
- W1975839640 type Work @default.
- W1975839640 sameAs 1975839640 @default.
- W1975839640 citedByCount "246" @default.
- W1975839640 countsByYear W19758396402012 @default.
- W1975839640 countsByYear W19758396402013 @default.
- W1975839640 countsByYear W19758396402014 @default.
- W1975839640 countsByYear W19758396402015 @default.
- W1975839640 countsByYear W19758396402016 @default.
- W1975839640 countsByYear W19758396402017 @default.
- W1975839640 countsByYear W19758396402018 @default.
- W1975839640 countsByYear W19758396402019 @default.
- W1975839640 countsByYear W19758396402020 @default.
- W1975839640 countsByYear W19758396402021 @default.
- W1975839640 countsByYear W19758396402022 @default.
- W1975839640 countsByYear W19758396402023 @default.
- W1975839640 crossrefType "journal-article" @default.
- W1975839640 hasAuthorship W1975839640A5048610055 @default.
- W1975839640 hasAuthorship W1975839640A5075724317 @default.
- W1975839640 hasAuthorship W1975839640A5081904302 @default.
- W1975839640 hasBestOaLocation W19758396402 @default.
- W1975839640 hasConcept C10551718 @default.
- W1975839640 hasConcept C119857082 @default.
- W1975839640 hasConcept C124101348 @default.
- W1975839640 hasConcept C136272165 @default.
- W1975839640 hasConcept C154945302 @default.
- W1975839640 hasConcept C22789450 @default.
- W1975839640 hasConcept C41008148 @default.
- W1975839640 hasConcept C50644808 @default.
- W1975839640 hasConceptScore W1975839640C10551718 @default.
- W1975839640 hasConceptScore W1975839640C119857082 @default.
- W1975839640 hasConceptScore W1975839640C124101348 @default.
- W1975839640 hasConceptScore W1975839640C136272165 @default.
- W1975839640 hasConceptScore W1975839640C154945302 @default.
- W1975839640 hasConceptScore W1975839640C22789450 @default.
- W1975839640 hasConceptScore W1975839640C41008148 @default.
- W1975839640 hasConceptScore W1975839640C50644808 @default.
- W1975839640 hasIssue "1-4" @default.
- W1975839640 hasLocation W19758396401 @default.
- W1975839640 hasLocation W19758396402 @default.
- W1975839640 hasOpenAccess W1975839640 @default.
- W1975839640 hasPrimaryLocation W19758396401 @default.
- W1975839640 hasRelatedWork W2383487638 @default.
- W1975839640 hasRelatedWork W2419551687 @default.
- W1975839640 hasRelatedWork W2522147713 @default.
- W1975839640 hasRelatedWork W2889453578 @default.
- W1975839640 hasRelatedWork W3036121832 @default.
- W1975839640 hasRelatedWork W3135297126 @default.
- W1975839640 hasRelatedWork W4285169119 @default.
- W1975839640 hasRelatedWork W4285479813 @default.
- W1975839640 hasRelatedWork W4316087074 @default.
- W1975839640 hasRelatedWork W1629725936 @default.
- W1975839640 hasVolume "372" @default.
- W1975839640 isParatext "false" @default.
- W1975839640 isRetracted "false" @default.