Matches in SemOpenAlex for { <https://semopenalex.org/work/W1976064694> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1976064694 abstract "A hidden Markov model (HMM) encompasses a large class of stochastic process models and has been successfully applied to a number of scientific and engineering problems, including speech and other pattern recognition problems, and biological sequence analysis. A major restriction is found, however, in conventional HMM, i.e., it is ill-suited to capture the interactions among different models. A variety of coupled hidden Markov models (CHMMs) have recently been proposed as extensions of HMM to better characterize multiple interdependent sequences. The resulting models have multiple state variables that are temporally coupled via matrices of conditional probabilities. This paper study is focused on the coupled discrete HMM, there are two state variables in the network. By generalizing forward-backward algorithm, Viterbi algorithm and Baum-Welch algorithm commonly used in conventional HMM to accommodate two state variables, several new formulae solving the 2-chain coupled discrete HMM probability evaluation, decoding and training problem are theoretically derived." @default.
- W1976064694 created "2016-06-24" @default.
- W1976064694 creator A5068079517 @default.
- W1976064694 creator A5083488465 @default.
- W1976064694 creator A5085351854 @default.
- W1976064694 date "2013-09-01" @default.
- W1976064694 modified "2023-10-12" @default.
- W1976064694 title "The Learning Algorithms of Coupled Discrete Hidden Markov Models" @default.
- W1976064694 cites W1528056001 @default.
- W1976064694 cites W1855281795 @default.
- W1976064694 cites W1940540303 @default.
- W1976064694 cites W2093989924 @default.
- W1976064694 cites W2125838338 @default.
- W1976064694 cites W2142384583 @default.
- W1976064694 cites W2151831732 @default.
- W1976064694 cites W2152239535 @default.
- W1976064694 cites W2165959773 @default.
- W1976064694 cites W2170418652 @default.
- W1976064694 cites W4245668478 @default.
- W1976064694 doi "https://doi.org/10.4028/www.scientific.net/amm.411-414.2106" @default.
- W1976064694 hasPublicationYear "2013" @default.
- W1976064694 type Work @default.
- W1976064694 sameAs 1976064694 @default.
- W1976064694 citedByCount "0" @default.
- W1976064694 crossrefType "journal-article" @default.
- W1976064694 hasAuthorship W1976064694A5068079517 @default.
- W1976064694 hasAuthorship W1976064694A5083488465 @default.
- W1976064694 hasAuthorship W1976064694A5085351854 @default.
- W1976064694 hasConcept C11413529 @default.
- W1976064694 hasConcept C119857082 @default.
- W1976064694 hasConcept C153180895 @default.
- W1976064694 hasConcept C154945302 @default.
- W1976064694 hasConcept C163836022 @default.
- W1976064694 hasConcept C196455857 @default.
- W1976064694 hasConcept C23224414 @default.
- W1976064694 hasConcept C2778112365 @default.
- W1976064694 hasConcept C41008148 @default.
- W1976064694 hasConcept C54355233 @default.
- W1976064694 hasConcept C54907487 @default.
- W1976064694 hasConcept C60582962 @default.
- W1976064694 hasConcept C64939953 @default.
- W1976064694 hasConcept C86803240 @default.
- W1976064694 hasConcept C98763669 @default.
- W1976064694 hasConceptScore W1976064694C11413529 @default.
- W1976064694 hasConceptScore W1976064694C119857082 @default.
- W1976064694 hasConceptScore W1976064694C153180895 @default.
- W1976064694 hasConceptScore W1976064694C154945302 @default.
- W1976064694 hasConceptScore W1976064694C163836022 @default.
- W1976064694 hasConceptScore W1976064694C196455857 @default.
- W1976064694 hasConceptScore W1976064694C23224414 @default.
- W1976064694 hasConceptScore W1976064694C2778112365 @default.
- W1976064694 hasConceptScore W1976064694C41008148 @default.
- W1976064694 hasConceptScore W1976064694C54355233 @default.
- W1976064694 hasConceptScore W1976064694C54907487 @default.
- W1976064694 hasConceptScore W1976064694C60582962 @default.
- W1976064694 hasConceptScore W1976064694C64939953 @default.
- W1976064694 hasConceptScore W1976064694C86803240 @default.
- W1976064694 hasConceptScore W1976064694C98763669 @default.
- W1976064694 hasLocation W19760646941 @default.
- W1976064694 hasOpenAccess W1976064694 @default.
- W1976064694 hasPrimaryLocation W19760646941 @default.
- W1976064694 hasRelatedWork W1559483828 @default.
- W1976064694 hasRelatedWork W1569256108 @default.
- W1976064694 hasRelatedWork W1802460591 @default.
- W1976064694 hasRelatedWork W1954174850 @default.
- W1976064694 hasRelatedWork W198922305 @default.
- W1976064694 hasRelatedWork W2035329354 @default.
- W1976064694 hasRelatedWork W2040170973 @default.
- W1976064694 hasRelatedWork W2052371652 @default.
- W1976064694 hasRelatedWork W2100912277 @default.
- W1976064694 hasRelatedWork W2116722627 @default.
- W1976064694 hasRelatedWork W2160495859 @default.
- W1976064694 hasRelatedWork W2185378393 @default.
- W1976064694 hasRelatedWork W2331065246 @default.
- W1976064694 hasRelatedWork W2375417030 @default.
- W1976064694 hasRelatedWork W2386275785 @default.
- W1976064694 hasRelatedWork W2951517377 @default.
- W1976064694 hasRelatedWork W3133369742 @default.
- W1976064694 hasRelatedWork W3134290562 @default.
- W1976064694 hasRelatedWork W3202881961 @default.
- W1976064694 hasRelatedWork W2094855064 @default.
- W1976064694 isParatext "false" @default.
- W1976064694 isRetracted "false" @default.
- W1976064694 magId "1976064694" @default.
- W1976064694 workType "article" @default.