Matches in SemOpenAlex for { <https://semopenalex.org/work/W1976078268> ?p ?o ?g. }
- W1976078268 endingPage "2124" @default.
- W1976078268 startingPage "2100" @default.
- W1976078268 abstract "The performance of regularized least-squares estimation in noisy compressed sensing is analyzed in the limit when the dimensions of the measurement matrix grow large. The sensing matrix is considered to be from a class of random ensembles that encloses as special cases standard Gaussian, row-orthogonal, geometric, and so-called T-orthogonal constructions. Source vectors that have non-uniform sparsity are included in the system model. Regularization based on ℓ-norm and leading to LASSO estimation, or basis pursuit denoising, is given the main emphasis in the analysis. Extensions to ℓ-norm and zero-norm regularization are also briefly discussed. The analysis is carried out using the replica method in conjunction with some novel matrix integration results. Numerical experiments for LASSO are provided to verify the accuracy of the analytical results. The numerical experiments show that for noisy compressed sensing, the standard Gaussian ensemble is a suboptimal choice for the measurement matrix. Orthogonal constructions provide a superior performance in all considered scenarios and are easier to implement in practical applications. It is also discovered that for non-uniform sparsity patterns, the T-orthogonal matrices can further improve the mean square error behavior of the reconstruction when the noise level is not too high. However, as the additive noise becomes more prominent in the system, the simple row-orthogonal measurement matrix appears to be the best choice out of the considered ensembles." @default.
- W1976078268 created "2016-06-24" @default.
- W1976078268 creator A5002600110 @default.
- W1976078268 creator A5043099254 @default.
- W1976078268 creator A5058197462 @default.
- W1976078268 date "2016-04-01" @default.
- W1976078268 modified "2023-10-02" @default.
- W1976078268 title "Analysis of Regularized LS Reconstruction and Random Matrix Ensembles in Compressed Sensing" @default.
- W1976078268 cites W1527520754 @default.
- W1976078268 cites W1941452196 @default.
- W1976078268 cites W1984277078 @default.
- W1976078268 cites W1986931325 @default.
- W1976078268 cites W2001759212 @default.
- W1976078268 cites W2023322777 @default.
- W1976078268 cites W2030449718 @default.
- W1976078268 cites W2041467025 @default.
- W1976078268 cites W2050556604 @default.
- W1976078268 cites W2063310369 @default.
- W1976078268 cites W2063978378 @default.
- W1976078268 cites W2067915219 @default.
- W1976078268 cites W2081785908 @default.
- W1976078268 cites W2082029531 @default.
- W1976078268 cites W2088972569 @default.
- W1976078268 cites W2090842051 @default.
- W1976078268 cites W2096586829 @default.
- W1976078268 cites W2099641086 @default.
- W1976078268 cites W2101837693 @default.
- W1976078268 cites W2115275122 @default.
- W1976078268 cites W2116394223 @default.
- W1976078268 cites W2118473837 @default.
- W1976078268 cites W2125830420 @default.
- W1976078268 cites W2127271355 @default.
- W1976078268 cites W2129131372 @default.
- W1976078268 cites W2129638195 @default.
- W1976078268 cites W2134233838 @default.
- W1976078268 cites W2134474909 @default.
- W1976078268 cites W2135046866 @default.
- W1976078268 cites W2138358551 @default.
- W1976078268 cites W2140856955 @default.
- W1976078268 cites W2145096794 @default.
- W1976078268 cites W2154332973 @default.
- W1976078268 cites W2160051394 @default.
- W1976078268 cites W2160955696 @default.
- W1976078268 cites W2160979406 @default.
- W1976078268 cites W2161410247 @default.
- W1976078268 cites W2167783913 @default.
- W1976078268 cites W2167839759 @default.
- W1976078268 cites W2169135699 @default.
- W1976078268 cites W2170558200 @default.
- W1976078268 cites W2173526877 @default.
- W1976078268 cites W2289917018 @default.
- W1976078268 cites W2320171901 @default.
- W1976078268 cites W2566505556 @default.
- W1976078268 cites W2962776339 @default.
- W1976078268 cites W2963405909 @default.
- W1976078268 cites W2963948465 @default.
- W1976078268 cites W2965130990 @default.
- W1976078268 cites W3098848552 @default.
- W1976078268 cites W3099994871 @default.
- W1976078268 cites W3100706365 @default.
- W1976078268 cites W3101710166 @default.
- W1976078268 cites W3104705077 @default.
- W1976078268 cites W3104898123 @default.
- W1976078268 cites W3105033759 @default.
- W1976078268 cites W3121195152 @default.
- W1976078268 cites W3123834632 @default.
- W1976078268 cites W4240189201 @default.
- W1976078268 cites W4250955649 @default.
- W1976078268 doi "https://doi.org/10.1109/tit.2016.2525824" @default.
- W1976078268 hasPublicationYear "2016" @default.
- W1976078268 type Work @default.
- W1976078268 sameAs 1976078268 @default.
- W1976078268 citedByCount "45" @default.
- W1976078268 countsByYear W19760782682014 @default.
- W1976078268 countsByYear W19760782682015 @default.
- W1976078268 countsByYear W19760782682016 @default.
- W1976078268 countsByYear W19760782682017 @default.
- W1976078268 countsByYear W19760782682018 @default.
- W1976078268 countsByYear W19760782682019 @default.
- W1976078268 countsByYear W19760782682020 @default.
- W1976078268 countsByYear W19760782682021 @default.
- W1976078268 countsByYear W19760782682022 @default.
- W1976078268 countsByYear W19760782682023 @default.
- W1976078268 crossrefType "journal-article" @default.
- W1976078268 hasAuthorship W1976078268A5002600110 @default.
- W1976078268 hasAuthorship W1976078268A5043099254 @default.
- W1976078268 hasAuthorship W1976078268A5058197462 @default.
- W1976078268 hasBestOaLocation W19760782682 @default.
- W1976078268 hasConcept C106487976 @default.
- W1976078268 hasConcept C11413529 @default.
- W1976078268 hasConcept C121332964 @default.
- W1976078268 hasConcept C124851039 @default.
- W1976078268 hasConcept C126255220 @default.
- W1976078268 hasConcept C154945302 @default.
- W1976078268 hasConcept C156872377 @default.
- W1976078268 hasConcept C158693339 @default.
- W1976078268 hasConcept C159985019 @default.
- W1976078268 hasConcept C163294075 @default.