Matches in SemOpenAlex for { <https://semopenalex.org/work/W1976093800> ?p ?o ?g. }
- W1976093800 endingPage "482" @default.
- W1976093800 startingPage "476" @default.
- W1976093800 abstract "The huge amount of new proteins that need a fast enzymatic activity characterization creates demands of protein QSAR theoretical models. The protein parameters that can be used for an enzyme/non-enzyme classification includes the simpler indices such as composition, sequence and connectivity, also called topological indices (TIs) and the computationally expensive 3D descriptors. A comparison of the 3D versus lower dimension indices has not been reported with respect to the power of discrimination of proteins according to enzyme action. A set of 966 proteins (enzymes and non-enzymes) whose structural characteristics are provided by PDB/DSSP files was analyzed with Python/Biopython scripts, STATISTICA and Weka. The list of indices includes, but it is not restricted to pure composition indices (residue fractions), DSSP secondary structure protein composition and 3D indices (surface and access). We also used mixed indices such as composition-sequence indices (Chou's pseudo-amino acid compositions or coupling numbers), 3D-composition (surface fractions) and DSSP secondary structure amino acid composition/propensities (obtained with our Prot-2S Web tool). In addition, we extend and test for the first time several classic TIs for the Randic's protein sequence Star graphs using our Sequence to Star Graph (S2SG) Python application. All the indices were processed with general discriminant analysis models (GDA), neural networks (NN) and machine learning (ML) methods and the results are presented versus complexity, average of Shannon's information entropy (Sh) and data/method type. This study compares for the first time all these classes of indices to assess the ratios between model accuracy and indices/model complexity in enzyme/non-enzyme discrimination. The use of different methods and complexity of data shows that one cannot establish a direct relation between the complexity and the accuracy of the model." @default.
- W1976093800 created "2016-06-24" @default.
- W1976093800 creator A5013497733 @default.
- W1976093800 creator A5058919066 @default.
- W1976093800 creator A5074119381 @default.
- W1976093800 date "2008-09-01" @default.
- W1976093800 modified "2023-10-18" @default.
- W1976093800 title "Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices" @default.
- W1976093800 cites W147273853 @default.
- W1976093800 cites W1514758940 @default.
- W1976093800 cites W1551123031 @default.
- W1976093800 cites W1561712938 @default.
- W1976093800 cites W1579014599 @default.
- W1976093800 cites W1659608558 @default.
- W1976093800 cites W1963733856 @default.
- W1976093800 cites W1964823421 @default.
- W1976093800 cites W1968416380 @default.
- W1976093800 cites W1971603507 @default.
- W1976093800 cites W1975341909 @default.
- W1976093800 cites W1977927254 @default.
- W1976093800 cites W1980577470 @default.
- W1976093800 cites W1981532526 @default.
- W1976093800 cites W1981803782 @default.
- W1976093800 cites W1985967447 @default.
- W1976093800 cites W1987713050 @default.
- W1976093800 cites W1996392933 @default.
- W1976093800 cites W1999246286 @default.
- W1976093800 cites W2007828112 @default.
- W1976093800 cites W2008708467 @default.
- W1976093800 cites W2015390729 @default.
- W1976093800 cites W2016949897 @default.
- W1976093800 cites W2026666393 @default.
- W1976093800 cites W2029334184 @default.
- W1976093800 cites W2029865295 @default.
- W1976093800 cites W2033043436 @default.
- W1976093800 cites W2038681300 @default.
- W1976093800 cites W2050034583 @default.
- W1976093800 cites W2055334398 @default.
- W1976093800 cites W2064461872 @default.
- W1976093800 cites W2065767445 @default.
- W1976093800 cites W2070972624 @default.
- W1976093800 cites W2072995782 @default.
- W1976093800 cites W2074146738 @default.
- W1976093800 cites W2075898920 @default.
- W1976093800 cites W2077759547 @default.
- W1976093800 cites W2080915318 @default.
- W1976093800 cites W2081393301 @default.
- W1976093800 cites W2084446624 @default.
- W1976093800 cites W2085176241 @default.
- W1976093800 cites W2087866582 @default.
- W1976093800 cites W2091490591 @default.
- W1976093800 cites W2092750499 @default.
- W1976093800 cites W2099757084 @default.
- W1976093800 cites W2105259921 @default.
- W1976093800 cites W2107350531 @default.
- W1976093800 cites W2107749303 @default.
- W1976093800 cites W2108170494 @default.
- W1976093800 cites W2110896564 @default.
- W1976093800 cites W2111973517 @default.
- W1976093800 cites W2116420909 @default.
- W1976093800 cites W2120026469 @default.
- W1976093800 cites W2125508887 @default.
- W1976093800 cites W2126377763 @default.
- W1976093800 cites W2130479394 @default.
- W1976093800 cites W2132292391 @default.
- W1976093800 cites W2134403677 @default.
- W1976093800 cites W2140445305 @default.
- W1976093800 cites W2141853895 @default.
- W1976093800 cites W2143885473 @default.
- W1976093800 cites W2143992167 @default.
- W1976093800 cites W2145358391 @default.
- W1976093800 cites W2145957695 @default.
- W1976093800 cites W2155057325 @default.
- W1976093800 cites W2160979370 @default.
- W1976093800 cites W2162335096 @default.
- W1976093800 cites W2163191901 @default.
- W1976093800 cites W2167772971 @default.
- W1976093800 cites W2171490488 @default.
- W1976093800 cites W2196876065 @default.
- W1976093800 cites W2203679171 @default.
- W1976093800 cites W2766967542 @default.
- W1976093800 doi "https://doi.org/10.1016/j.jtbi.2008.06.003" @default.
- W1976093800 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18606172" @default.
- W1976093800 hasPublicationYear "2008" @default.
- W1976093800 type Work @default.
- W1976093800 sameAs 1976093800 @default.
- W1976093800 citedByCount "54" @default.
- W1976093800 countsByYear W19760938002012 @default.
- W1976093800 countsByYear W19760938002013 @default.
- W1976093800 countsByYear W19760938002014 @default.
- W1976093800 countsByYear W19760938002015 @default.
- W1976093800 countsByYear W19760938002016 @default.
- W1976093800 countsByYear W19760938002017 @default.
- W1976093800 countsByYear W19760938002018 @default.
- W1976093800 countsByYear W19760938002019 @default.
- W1976093800 countsByYear W19760938002020 @default.
- W1976093800 countsByYear W19760938002021 @default.
- W1976093800 countsByYear W19760938002022 @default.