Matches in SemOpenAlex for { <https://semopenalex.org/work/W1976112051> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W1976112051 endingPage "126" @default.
- W1976112051 startingPage "101" @default.
- W1976112051 abstract "A classical theorem of Brauner [3], (also Kahler [10], Zariski [15]), gives a formula for the generators and relations of the topological fundamental group of the knot determined by the germ of an analytically irreducible singular curve in C. These elegant formulas depend only on the characteristic pairs of a Puiseux series expansion of the curve. Zariski states this Theorem as part of his discussion on Puiseux series in the chapter on resolution of singularities in his book ”Algebraic Surfaces” [16]. Let γ be the germ of an analyically irreducible plane curve singularity at the origin. Let De be an epsilon ball centered at the origin in C , and let Se be the boundary of De. For e sufficiently small, the pair (De, γ ∩De) is homeomorphic to the pair consisting of the cone over Se and the cone over γ ∩ Se (c.f. Theorem 2.10 [11]). Thus Se − γ ∩ Se is a strong deformation retract of Be − γ ∩ Be, and the topological fundamental group of the knot is isomorphic to π 1 (Be − γ ∩Be). The arithmetic analogue of the topological fundamental group of the knot determined by the germ of an analytically irreducible singular plane curve is thus the algebraic fundamental group π1(Spec(R) − V (f)) , where R = k[[x, y]] is a power series ring over an algebraically closed field k, and f ∈ R is irreducible. The basic theory of the algebraic fundamental group is classical, being understood for Riemann surfaces in the 19th century. The algebraic fundamental group is constructed from the finite topological covers, which are algebraic. Abhyankar extended the algebraic fundamental group to arbitrary characteristic [2] and Grothendieck [8] defined the fundamental group in general. In positive characteristic, Puiseux series expansions do not always exist (c.f section 2.1 of [5]). However, in characteristic zero, the characteristic pairs of the Puiseux series are determined by the resolution graph of a resolution of singularites of the curve germ. As such, the characteristic pairs can be defined in any characteristic from the resolution graph (c.f [5]). In this paper we prove an arithmetic analogue of Brauner’s theorem, valid in arbitrary characteristic. The generators and relations in our Theorem (Theorem 0.1" @default.
- W1976112051 created "2016-06-24" @default.
- W1976112051 creator A5039608048 @default.
- W1976112051 creator A5072916907 @default.
- W1976112051 date "2000-08-01" @default.
- W1976112051 modified "2023-09-27" @default.
- W1976112051 title "The Algebraic Fundamental Group of a Curve Singularity" @default.
- W1976112051 cites W143253503 @default.
- W1976112051 cites W1490385753 @default.
- W1976112051 cites W1492806110 @default.
- W1976112051 cites W1495980450 @default.
- W1976112051 cites W1577061392 @default.
- W1976112051 cites W2058157684 @default.
- W1976112051 cites W2064834351 @default.
- W1976112051 cites W2067969625 @default.
- W1976112051 cites W2089034921 @default.
- W1976112051 cites W2330062860 @default.
- W1976112051 cites W2332040385 @default.
- W1976112051 cites W588295442 @default.
- W1976112051 doi "https://doi.org/10.1006/jabr.1999.7941" @default.
- W1976112051 hasPublicationYear "2000" @default.
- W1976112051 type Work @default.
- W1976112051 sameAs 1976112051 @default.
- W1976112051 citedByCount "4" @default.
- W1976112051 countsByYear W19761120512012 @default.
- W1976112051 crossrefType "journal-article" @default.
- W1976112051 hasAuthorship W1976112051A5039608048 @default.
- W1976112051 hasAuthorship W1976112051A5072916907 @default.
- W1976112051 hasBestOaLocation W19761120511 @default.
- W1976112051 hasConcept C134306372 @default.
- W1976112051 hasConcept C136119220 @default.
- W1976112051 hasConcept C16171025 @default.
- W1976112051 hasConcept C178790620 @default.
- W1976112051 hasConcept C185592680 @default.
- W1976112051 hasConcept C199793520 @default.
- W1976112051 hasConcept C202444582 @default.
- W1976112051 hasConcept C2781311116 @default.
- W1976112051 hasConcept C33923547 @default.
- W1976112051 hasConcept C9376300 @default.
- W1976112051 hasConceptScore W1976112051C134306372 @default.
- W1976112051 hasConceptScore W1976112051C136119220 @default.
- W1976112051 hasConceptScore W1976112051C16171025 @default.
- W1976112051 hasConceptScore W1976112051C178790620 @default.
- W1976112051 hasConceptScore W1976112051C185592680 @default.
- W1976112051 hasConceptScore W1976112051C199793520 @default.
- W1976112051 hasConceptScore W1976112051C202444582 @default.
- W1976112051 hasConceptScore W1976112051C2781311116 @default.
- W1976112051 hasConceptScore W1976112051C33923547 @default.
- W1976112051 hasConceptScore W1976112051C9376300 @default.
- W1976112051 hasIssue "1" @default.
- W1976112051 hasLocation W19761120511 @default.
- W1976112051 hasOpenAccess W1976112051 @default.
- W1976112051 hasPrimaryLocation W19761120511 @default.
- W1976112051 hasRelatedWork W2015030069 @default.
- W1976112051 hasRelatedWork W2027581003 @default.
- W1976112051 hasRelatedWork W2038106543 @default.
- W1976112051 hasRelatedWork W2054099205 @default.
- W1976112051 hasRelatedWork W2061215700 @default.
- W1976112051 hasRelatedWork W2063684714 @default.
- W1976112051 hasRelatedWork W2073802676 @default.
- W1976112051 hasRelatedWork W2156697727 @default.
- W1976112051 hasRelatedWork W2597512059 @default.
- W1976112051 hasRelatedWork W2885964212 @default.
- W1976112051 hasVolume "230" @default.
- W1976112051 isParatext "false" @default.
- W1976112051 isRetracted "false" @default.
- W1976112051 magId "1976112051" @default.
- W1976112051 workType "article" @default.