Matches in SemOpenAlex for { <https://semopenalex.org/work/W1976141548> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W1976141548 endingPage "489" @default.
- W1976141548 startingPage "489" @default.
- W1976141548 abstract "Emotion recognition still poses a challenge lying at the core of the rapidly growing area of affective computing and is crucial for establishing a successful human–computer interaction. Identification and understanding of emotions are achieved through various measures, such as subjective self-reports, face-tracking, voice analysis, gaze-tracking, as well as the analysis of autonomic and central neurophysiological measurements. Current approaches to emotion recognition based on electroencephalography (EEG) mostly rely on various handcrafted features extracted over relatively long time windows of EEG during participants exposure to appropriate affective stimuli. In this paper, we present a short-term emotion recognition framework based on spiking neural network (SNN) modelling of spatio-temporal EEG patterns. Our method relies on EEG signal segmentation based on detection of short-term changes in facial landmarks, and as such includes no computation of handcrafted EEG features. Differences between participants’ EEG properties are taken into account via subject-dependent spike encoding in the formulated subject-independent emotion recognition task. We test our methods on the publicly available DEAP and MAHNOB-HCI databases due to the availability of both EEG and frontal face video data. Through an exhaustive hyperparameter optimisation strategy, we show that the proposed SNN-based representation of EEG spiking patterns provides valuable information for short- term emotion recognition. The obtained accuracies are 78.97% and 79.39% in arousal classification, and 67.76% and 72.12% in valence classification, on the DEAP and MAHNOB-HCI datasets, respectively. Furthermore, through the application of a brain-inspired SNN model, this study provides novel insight and helps in the understanding of the neural mechanisms involved in emotional processing in the context of audiovisual stimuli, such as affective videos. The presented results encourage the use of the proposed EEG processing methodology as a complement to existing features and methods commonly used for EEG-based emotion recognition, especially for short-term arousal recognition." @default.
- W1976141548 created "2016-06-24" @default.
- W1976141548 creator A5055300632 @default.
- W1976141548 creator A5059539256 @default.
- W1976141548 creator A5075046872 @default.
- W1976141548 creator A5088763100 @default.
- W1976141548 date "1998-04-01" @default.
- W1976141548 modified "2023-09-26" @default.
- W1976141548 title "EEG patterns during different emotions" @default.
- W1976141548 doi "https://doi.org/10.1016/s0163-6383(98)91702-7" @default.
- W1976141548 hasPublicationYear "1998" @default.
- W1976141548 type Work @default.
- W1976141548 sameAs 1976141548 @default.
- W1976141548 citedByCount "0" @default.
- W1976141548 crossrefType "journal-article" @default.
- W1976141548 hasAuthorship W1976141548A5055300632 @default.
- W1976141548 hasAuthorship W1976141548A5059539256 @default.
- W1976141548 hasAuthorship W1976141548A5075046872 @default.
- W1976141548 hasAuthorship W1976141548A5088763100 @default.
- W1976141548 hasConcept C152478114 @default.
- W1976141548 hasConcept C153180895 @default.
- W1976141548 hasConcept C154945302 @default.
- W1976141548 hasConcept C15744967 @default.
- W1976141548 hasConcept C169760540 @default.
- W1976141548 hasConcept C195704467 @default.
- W1976141548 hasConcept C2777438025 @default.
- W1976141548 hasConcept C28490314 @default.
- W1976141548 hasConcept C41008148 @default.
- W1976141548 hasConcept C522805319 @default.
- W1976141548 hasConcept C6438553 @default.
- W1976141548 hasConcept C89600930 @default.
- W1976141548 hasConceptScore W1976141548C152478114 @default.
- W1976141548 hasConceptScore W1976141548C153180895 @default.
- W1976141548 hasConceptScore W1976141548C154945302 @default.
- W1976141548 hasConceptScore W1976141548C15744967 @default.
- W1976141548 hasConceptScore W1976141548C169760540 @default.
- W1976141548 hasConceptScore W1976141548C195704467 @default.
- W1976141548 hasConceptScore W1976141548C2777438025 @default.
- W1976141548 hasConceptScore W1976141548C28490314 @default.
- W1976141548 hasConceptScore W1976141548C41008148 @default.
- W1976141548 hasConceptScore W1976141548C522805319 @default.
- W1976141548 hasConceptScore W1976141548C6438553 @default.
- W1976141548 hasConceptScore W1976141548C89600930 @default.
- W1976141548 hasLocation W19761415481 @default.
- W1976141548 hasOpenAccess W1976141548 @default.
- W1976141548 hasPrimaryLocation W19761415481 @default.
- W1976141548 hasRelatedWork W1507687735 @default.
- W1976141548 hasRelatedWork W1967993123 @default.
- W1976141548 hasRelatedWork W2143350951 @default.
- W1976141548 hasRelatedWork W2510758617 @default.
- W1976141548 hasRelatedWork W2899077601 @default.
- W1976141548 hasRelatedWork W290680772 @default.
- W1976141548 hasRelatedWork W2990866961 @default.
- W1976141548 hasRelatedWork W3033658423 @default.
- W1976141548 hasRelatedWork W3169597903 @default.
- W1976141548 hasRelatedWork W4206076898 @default.
- W1976141548 hasVolume "21" @default.
- W1976141548 isParatext "false" @default.
- W1976141548 isRetracted "false" @default.
- W1976141548 magId "1976141548" @default.
- W1976141548 workType "article" @default.