Matches in SemOpenAlex for { <https://semopenalex.org/work/W1976142109> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W1976142109 abstract "Several previous researchers in sleep stages classification often considered that sleep stages were independent events. They have assumed that every epoch in sleep stages is independent. By nature, sleep is a sequence process so that the current sleep stages will affect to the next sleep stages. Ten datasets of single lead ECG signal from healthy people have been collected. Fifteen features can be extracted from raw ECG signal to describe the sleep stages. Smoothing signal using wavelet denoising is done as the preprocessing steps in order to eliminate noise. Data normalization of input value is also used to handle extreme feature values which will be mapped by activation function in neural network approach. This paper evaluate contribution of temporal pattern in the sleep stages classification result based on fact that sleep stages is a time series data. Multlayer perceptron (MLP) and Time Delay Neural network (TDNN) using standard back propagation algorithm and moment technique are applied to analyze the contribution of the temporal pattern. TDNN is an extended of MLP that the inputs are sequence of current epoch and previous epoch. TDNN as a classifier that can learn temporal pattern has shown better performance than MLP. It shows that temporal pattern takes a part to determine the correct classification result in the sleep stages classification. An appropriate memory long of temporal pattern is required to get the optimal classification result because longer memory cannot guarantee that the classification result is always better." @default.
- W1976142109 created "2016-06-24" @default.
- W1976142109 creator A5039645915 @default.
- W1976142109 creator A5089643487 @default.
- W1976142109 date "2012-06-01" @default.
- W1976142109 modified "2023-10-14" @default.
- W1976142109 title "Sleep stages classification based on temporal pattern recognition in neural network approach" @default.
- W1976142109 cites W1444168786 @default.
- W1976142109 cites W1797231580 @default.
- W1976142109 cites W2032291520 @default.
- W1976142109 cites W2040175382 @default.
- W1976142109 cites W2139562446 @default.
- W1976142109 cites W2145675843 @default.
- W1976142109 cites W2168934702 @default.
- W1976142109 cites W2537767267 @default.
- W1976142109 cites W2542321248 @default.
- W1976142109 cites W2740795343 @default.
- W1976142109 doi "https://doi.org/10.1109/ijcnn.2012.6252386" @default.
- W1976142109 hasPublicationYear "2012" @default.
- W1976142109 type Work @default.
- W1976142109 sameAs 1976142109 @default.
- W1976142109 citedByCount "7" @default.
- W1976142109 countsByYear W19761421092013 @default.
- W1976142109 countsByYear W19761421092014 @default.
- W1976142109 countsByYear W19761421092015 @default.
- W1976142109 countsByYear W19761421092017 @default.
- W1976142109 countsByYear W19761421092020 @default.
- W1976142109 crossrefType "proceedings-article" @default.
- W1976142109 hasAuthorship W1976142109A5039645915 @default.
- W1976142109 hasAuthorship W1976142109A5089643487 @default.
- W1976142109 hasBestOaLocation W19761421092 @default.
- W1976142109 hasConcept C10551718 @default.
- W1976142109 hasConcept C136886441 @default.
- W1976142109 hasConcept C144024400 @default.
- W1976142109 hasConcept C153180895 @default.
- W1976142109 hasConcept C154945302 @default.
- W1976142109 hasConcept C155032097 @default.
- W1976142109 hasConcept C179717631 @default.
- W1976142109 hasConcept C19165224 @default.
- W1976142109 hasConcept C28490314 @default.
- W1976142109 hasConcept C31972630 @default.
- W1976142109 hasConcept C34736171 @default.
- W1976142109 hasConcept C3770464 @default.
- W1976142109 hasConcept C41008148 @default.
- W1976142109 hasConcept C50644808 @default.
- W1976142109 hasConcept C52622490 @default.
- W1976142109 hasConceptScore W1976142109C10551718 @default.
- W1976142109 hasConceptScore W1976142109C136886441 @default.
- W1976142109 hasConceptScore W1976142109C144024400 @default.
- W1976142109 hasConceptScore W1976142109C153180895 @default.
- W1976142109 hasConceptScore W1976142109C154945302 @default.
- W1976142109 hasConceptScore W1976142109C155032097 @default.
- W1976142109 hasConceptScore W1976142109C179717631 @default.
- W1976142109 hasConceptScore W1976142109C19165224 @default.
- W1976142109 hasConceptScore W1976142109C28490314 @default.
- W1976142109 hasConceptScore W1976142109C31972630 @default.
- W1976142109 hasConceptScore W1976142109C34736171 @default.
- W1976142109 hasConceptScore W1976142109C3770464 @default.
- W1976142109 hasConceptScore W1976142109C41008148 @default.
- W1976142109 hasConceptScore W1976142109C50644808 @default.
- W1976142109 hasConceptScore W1976142109C52622490 @default.
- W1976142109 hasLocation W19761421091 @default.
- W1976142109 hasLocation W19761421092 @default.
- W1976142109 hasOpenAccess W1976142109 @default.
- W1976142109 hasPrimaryLocation W19761421091 @default.
- W1976142109 hasRelatedWork W2098155230 @default.
- W1976142109 hasRelatedWork W2101624653 @default.
- W1976142109 hasRelatedWork W2126100045 @default.
- W1976142109 hasRelatedWork W2139604010 @default.
- W1976142109 hasRelatedWork W2338394561 @default.
- W1976142109 hasRelatedWork W2391959412 @default.
- W1976142109 hasRelatedWork W2588076546 @default.
- W1976142109 hasRelatedWork W3003836766 @default.
- W1976142109 hasRelatedWork W2129870392 @default.
- W1976142109 hasRelatedWork W2179998186 @default.
- W1976142109 isParatext "false" @default.
- W1976142109 isRetracted "false" @default.
- W1976142109 magId "1976142109" @default.
- W1976142109 workType "article" @default.