Matches in SemOpenAlex for { <https://semopenalex.org/work/W1976220104> ?p ?o ?g. }
- W1976220104 endingPage "503" @default.
- W1976220104 startingPage "490" @default.
- W1976220104 abstract "Since 2001, a novel type of recurrent neural network called Zhang neural network (ZNN) has been proposed, investigated, and exploited for solving online time-varying problems in a variety of scientific and engineering fields. In this paper, three discrete-time ZNN models are first proposed to solve the problem of time-varying quadratic minimization (TVQM). Such discrete-time ZNN models exploit methodologically the time derivatives of time-varying coefficients and the inverse of the time-varying coefficient matrix. To eliminate explicit matrix-inversion operation, the quasi-Newton BFGS method is introduced, which approximates effectively the inverse of the Hessian matrix; thus, three discrete-time ZNN models combined with the quasi-Newton BFGS method (named ZNN-BFGS) are proposed and investigated for TVQM. In addition, according to the criterion of whether the time-derivative information of time-varying coefficients is explicitly known/used or not, these proposed discrete-time models are classified into three categories: 1) models with time-derivative information known (i.e., ZNN-K and ZNN-BFGS-K models), 2) models with time-derivative information unknown (i.e., ZNN-U and ZNN-BFGS-U models), and 3) simplified models without using time-derivative information (i.e., ZNN-S and ZNN-BFGS-S models). The well-known gradient-based neural network is also developed to handle TVQM for comparison with the proposed ZNN and ZNN-BFGS models. Illustrative examples are provided and analyzed to substantiate the efficacy of these proposed models for TVQM." @default.
- W1976220104 created "2016-06-24" @default.
- W1976220104 creator A5011863190 @default.
- W1976220104 creator A5034213282 @default.
- W1976220104 creator A5053064477 @default.
- W1976220104 date "2013-04-01" @default.
- W1976220104 modified "2023-10-08" @default.
- W1976220104 title "Link Between and Comparison and Combination of Zhang Neural Network and Quasi-Newton BFGS Method for Time-Varying Quadratic Minimization" @default.
- W1976220104 cites W1484735710 @default.
- W1976220104 cites W1546270029 @default.
- W1976220104 cites W1578671836 @default.
- W1976220104 cites W1580692218 @default.
- W1976220104 cites W1969196222 @default.
- W1976220104 cites W1973034015 @default.
- W1976220104 cites W1974210850 @default.
- W1976220104 cites W1988233868 @default.
- W1976220104 cites W2005136695 @default.
- W1976220104 cites W2014530379 @default.
- W1976220104 cites W2015866247 @default.
- W1976220104 cites W2038210983 @default.
- W1976220104 cites W2049852972 @default.
- W1976220104 cites W2051969395 @default.
- W1976220104 cites W2056641273 @default.
- W1976220104 cites W2064842188 @default.
- W1976220104 cites W2078409719 @default.
- W1976220104 cites W2081938492 @default.
- W1976220104 cites W2084040818 @default.
- W1976220104 cites W2094206629 @default.
- W1976220104 cites W2099791377 @default.
- W1976220104 cites W2103111465 @default.
- W1976220104 cites W2105363862 @default.
- W1976220104 cites W2108186760 @default.
- W1976220104 cites W2110663062 @default.
- W1976220104 cites W2112968087 @default.
- W1976220104 cites W2130317597 @default.
- W1976220104 cites W2137649272 @default.
- W1976220104 cites W2138244240 @default.
- W1976220104 cites W2138594241 @default.
- W1976220104 cites W2151048250 @default.
- W1976220104 cites W2153202134 @default.
- W1976220104 cites W2155387335 @default.
- W1976220104 cites W2165896294 @default.
- W1976220104 cites W2302808317 @default.
- W1976220104 cites W4250589301 @default.
- W1976220104 doi "https://doi.org/10.1109/tsmcb.2012.2210038" @default.
- W1976220104 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22929435" @default.
- W1976220104 hasPublicationYear "2013" @default.
- W1976220104 type Work @default.
- W1976220104 sameAs 1976220104 @default.
- W1976220104 citedByCount "59" @default.
- W1976220104 countsByYear W19762201042013 @default.
- W1976220104 countsByYear W19762201042014 @default.
- W1976220104 countsByYear W19762201042015 @default.
- W1976220104 countsByYear W19762201042016 @default.
- W1976220104 countsByYear W19762201042017 @default.
- W1976220104 countsByYear W19762201042018 @default.
- W1976220104 countsByYear W19762201042019 @default.
- W1976220104 countsByYear W19762201042020 @default.
- W1976220104 countsByYear W19762201042021 @default.
- W1976220104 countsByYear W19762201042022 @default.
- W1976220104 countsByYear W19762201042023 @default.
- W1976220104 crossrefType "journal-article" @default.
- W1976220104 hasAuthorship W1976220104A5011863190 @default.
- W1976220104 hasAuthorship W1976220104A5034213282 @default.
- W1976220104 hasAuthorship W1976220104A5053064477 @default.
- W1976220104 hasConcept C106487976 @default.
- W1976220104 hasConcept C114954040 @default.
- W1976220104 hasConcept C121332964 @default.
- W1976220104 hasConcept C126255220 @default.
- W1976220104 hasConcept C129844170 @default.
- W1976220104 hasConcept C132721684 @default.
- W1976220104 hasConcept C147168706 @default.
- W1976220104 hasConcept C147764199 @default.
- W1976220104 hasConcept C154945302 @default.
- W1976220104 hasConcept C158622935 @default.
- W1976220104 hasConcept C159985019 @default.
- W1976220104 hasConcept C165696696 @default.
- W1976220104 hasConcept C192562407 @default.
- W1976220104 hasConcept C203616005 @default.
- W1976220104 hasConcept C207467116 @default.
- W1976220104 hasConcept C2524010 @default.
- W1976220104 hasConcept C28826006 @default.
- W1976220104 hasConcept C33923547 @default.
- W1976220104 hasConcept C38652104 @default.
- W1976220104 hasConcept C41008148 @default.
- W1976220104 hasConcept C50644808 @default.
- W1976220104 hasConcept C62520636 @default.
- W1976220104 hasConcept C85189116 @default.
- W1976220104 hasConceptScore W1976220104C106487976 @default.
- W1976220104 hasConceptScore W1976220104C114954040 @default.
- W1976220104 hasConceptScore W1976220104C121332964 @default.
- W1976220104 hasConceptScore W1976220104C126255220 @default.
- W1976220104 hasConceptScore W1976220104C129844170 @default.
- W1976220104 hasConceptScore W1976220104C132721684 @default.
- W1976220104 hasConceptScore W1976220104C147168706 @default.
- W1976220104 hasConceptScore W1976220104C147764199 @default.
- W1976220104 hasConceptScore W1976220104C154945302 @default.
- W1976220104 hasConceptScore W1976220104C158622935 @default.