Matches in SemOpenAlex for { <https://semopenalex.org/work/W1976226355> ?p ?o ?g. }
- W1976226355 endingPage "2477" @default.
- W1976226355 startingPage "2464" @default.
- W1976226355 abstract "The adsorption and conformation of bovine serum albumin (BSA) on gold nanoparticles (AuNPs) were interrogated both qualitatively and quantitatively via complementary physicochemical characterization methods. Dynamic light scattering (DLS), asymmetric-flow field flow fractionation (AFFF), fluorescence spectrometry, and attenuated total reflectance−Fourier transform infrared (ATR-FTIR) spectroscopy were combined to characterize BSA−AuNP conjugates under fluid conditions, while conjugates in the aerosol state were characterized by electrospray-differential mobility analysis (ES-DMA). The presence of unbound BSA molecules interferes with DLS analysis of the conjugates, particularly as the AuNP size decreases (i.e., below 30 nm in diameter). Under conditions where the γ value is high, where γ is defined as the ratio of scattering intensity by AuNPs to the scattering intensity by unbound BSA, DLS size results are consistent with results obtained after fractionation by AFFF. Additionally, the AuNP hydrodynamic size exhibits a greater proportional increase due to BSA conjugation at pH values below 2.5 compared with less acidic pH values (3.4−7.3), corresponding with the reversibly denatured (E or F form) conformation of BSA below pH 2.5. Over the pH range from 3.4 to 7.3, the hydrodynamic size of the conjugate is nearly constant, suggesting conformational stability over this range. Because of the difference in the measurement environment, a larger increase of AuNP size is observed following BSA conjugation when measured in the wet state (i.e., by DLS and AFFF) compared to the dry state (by ES-DMA). Molecular surface density for BSA is estimated based on ES-DMA and fluorescence measurements. Results from the two techniques are consistent and similar, but slightly higher for ES-DMA, with an average adsorbate density of 0.015 nm−2. Moreover, from the change of particle size, we determine the extent of adsorption for BSA on AuNPs using DLS and ES-DMA at 21 °C, which show that increasing the concentration of BSA increases the measured change in AuNP size. Using ES-DMA, we observe that the BSA surface density reaches 90% of saturation at a solution phase concentration between 10 and 30 μmol/L, which is roughly consistent with fluorescence and ATR-FTIR results. The equilibrium binding constant for BSA on AuNPs is calculated by applying the Langmuir equation, with resulting values ranging from 0.51 × 106 to 1.65 × 106 L/mol, suggesting a strong affinity due to bonding between the single free exterior thiol on N-form BSA (associated with a cysteine residue) and the AuNP surface. Moreover, the adsorption interaction induces a conformational change in BSA secondary structure, resulting in less α-helix content and more open structures (β-sheet, random, or expanded)." @default.
- W1976226355 created "2016-06-24" @default.
- W1976226355 creator A5008016664 @default.
- W1976226355 creator A5023551313 @default.
- W1976226355 creator A5029827136 @default.
- W1976226355 creator A5030657270 @default.
- W1976226355 creator A5033189306 @default.
- W1976226355 creator A5050870917 @default.
- W1976226355 creator A5055704852 @default.
- W1976226355 creator A5062520686 @default.
- W1976226355 date "2011-02-22" @default.
- W1976226355 modified "2023-10-16" @default.
- W1976226355 title "Adsorption and Conformation of Serum Albumin Protein on Gold Nanoparticles Investigated Using Dimensional Measurements and in Situ Spectroscopic Methods" @default.
- W1976226355 cites W1504792186 @default.
- W1976226355 cites W170665370 @default.
- W1976226355 cites W1873461859 @default.
- W1976226355 cites W1963622279 @default.
- W1976226355 cites W1963745089 @default.
- W1976226355 cites W1964353134 @default.
- W1976226355 cites W1964476609 @default.
- W1976226355 cites W1967368097 @default.
- W1976226355 cites W1968726218 @default.
- W1976226355 cites W1971248530 @default.
- W1976226355 cites W1972062496 @default.
- W1976226355 cites W1973333051 @default.
- W1976226355 cites W1976920225 @default.
- W1976226355 cites W1977529440 @default.
- W1976226355 cites W1977724404 @default.
- W1976226355 cites W1980407712 @default.
- W1976226355 cites W1990379353 @default.
- W1976226355 cites W2000029779 @default.
- W1976226355 cites W2002422065 @default.
- W1976226355 cites W2006403280 @default.
- W1976226355 cites W2011956254 @default.
- W1976226355 cites W2021217698 @default.
- W1976226355 cites W2023119820 @default.
- W1976226355 cites W2027239458 @default.
- W1976226355 cites W2031410604 @default.
- W1976226355 cites W2031675866 @default.
- W1976226355 cites W2032831754 @default.
- W1976226355 cites W2034434451 @default.
- W1976226355 cites W2035318619 @default.
- W1976226355 cites W2037231741 @default.
- W1976226355 cites W2044252957 @default.
- W1976226355 cites W2044561155 @default.
- W1976226355 cites W2046546023 @default.
- W1976226355 cites W2048260467 @default.
- W1976226355 cites W2048926712 @default.
- W1976226355 cites W2049033562 @default.
- W1976226355 cites W2050608724 @default.
- W1976226355 cites W2052664130 @default.
- W1976226355 cites W2055831838 @default.
- W1976226355 cites W2057506115 @default.
- W1976226355 cites W2057910069 @default.
- W1976226355 cites W2058862771 @default.
- W1976226355 cites W2067058146 @default.
- W1976226355 cites W2071243886 @default.
- W1976226355 cites W2073964150 @default.
- W1976226355 cites W2079094085 @default.
- W1976226355 cites W2082691108 @default.
- W1976226355 cites W2086364030 @default.
- W1976226355 cites W2094805915 @default.
- W1976226355 cites W2102449739 @default.
- W1976226355 cites W2106878780 @default.
- W1976226355 cites W2113793432 @default.
- W1976226355 cites W2116189530 @default.
- W1976226355 cites W2119812758 @default.
- W1976226355 cites W2120240426 @default.
- W1976226355 cites W2122124176 @default.
- W1976226355 cites W2124730634 @default.
- W1976226355 cites W2128791326 @default.
- W1976226355 cites W2133652096 @default.
- W1976226355 cites W2145714543 @default.
- W1976226355 cites W2145921425 @default.
- W1976226355 cites W2155798119 @default.
- W1976226355 cites W2312269453 @default.
- W1976226355 cites W2322289943 @default.
- W1976226355 cites W2490128997 @default.
- W1976226355 cites W4211146992 @default.
- W1976226355 doi "https://doi.org/10.1021/la104124d" @default.
- W1976226355 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21341776" @default.
- W1976226355 hasPublicationYear "2011" @default.
- W1976226355 type Work @default.
- W1976226355 sameAs 1976226355 @default.
- W1976226355 citedByCount "350" @default.
- W1976226355 countsByYear W19762263552012 @default.
- W1976226355 countsByYear W19762263552013 @default.
- W1976226355 countsByYear W19762263552014 @default.
- W1976226355 countsByYear W19762263552015 @default.
- W1976226355 countsByYear W19762263552016 @default.
- W1976226355 countsByYear W19762263552017 @default.
- W1976226355 countsByYear W19762263552018 @default.
- W1976226355 countsByYear W19762263552019 @default.
- W1976226355 countsByYear W19762263552020 @default.
- W1976226355 countsByYear W19762263552021 @default.
- W1976226355 countsByYear W19762263552022 @default.
- W1976226355 countsByYear W19762263552023 @default.
- W1976226355 crossrefType "journal-article" @default.