Matches in SemOpenAlex for { <https://semopenalex.org/work/W1976226722> ?p ?o ?g. }
- W1976226722 endingPage "1743" @default.
- W1976226722 startingPage "1716" @default.
- W1976226722 abstract "We develop a duality theory for localizations in the context of ring spectra in algebraic topology. We apply this to prove a theorem in the modular representation theory of finite groups. Let G be a finite group and k be an algebraically closed field of characteristic p . If p is a homogeneous nonmaximal prime ideal in H ∗ ( G , k ) , then there is an idempotent module κ p which picks out the layer of the stable module category corresponding to p , and which was used by Benson, Carlson and Rickard [D.J. Benson, J.F. Carlson, J. Rickard, Thick subcategories of the stable module category, Fund. Math. 153 (1997) 59–80] in their development of varieties for infinitely generated k G -modules. Our main theorem states that the Tate cohomology H ˆ ∗ ( G , κ p ) is a shift of the injective hull of H ∗ ( G , k ) / p as a graded H ∗ ( G , k ) -module. Since κ p can be constructed using a version of the stable Koszul complex, this can be viewed as a statement of localized Gorenstein duality in modular representation theory. Various consequences of this theorem are given, including the statement that the stable endomorphism ring of the module κ p is the p -completion of cohomology H ∗ ( G , k ) p ∧ , and the statement that κ p is a pure injective k G -module. In the course of proving the theorem, we further develop the framework introduced by Dwyer, Greenlees and Iyengar [W.G. Dwyer, J.P.C. Greenlees, S. Iyengar, Duality in algebra and topology, Adv. Math. 200 (2006) 357–402] for translating between the unbounded derived categories D ( k G ) and D ( C ∗ ( B G ; k ) ) . We also construct a functor Ψ : D ( k G ) → StMod ( k G ) to the full stable module category, which extends the usual functor D b ( k G ) → stmod ( k G ) and which preserves Tate cohomology. The main theorem is formulated and proved in D ( C ∗ ( B G ; k ) ) , and then translated to D ( k G ) and finally to StMod ( k G ) . The main theorem in D ( C ∗ ( B G ; k ) ) can be viewed as stating that a version of Gorenstein duality holds after localizing at a prime ideal in H ∗ ( B G ; k ) . This version of the theorem holds more generally for a compact Lie group satisfying a mild orientation condition. This duality lies behind the local cohomology spectral sequence of Greenlees and Lyubeznik for localizations of H ∗ ( B G ; k ) . In a companion paper [D.J. Benson, Idempotent k G -modules with injective cohomology, J. Pure Appl. Algebra 212 (7) (2008) 1744–1746], a more recent and shorter proof of the main theorem is given. The more recent proof seems less natural, and does not say anything about localization of the Gorenstein condition for compact Lie groups." @default.
- W1976226722 created "2016-06-24" @default.
- W1976226722 creator A5014457852 @default.
- W1976226722 creator A5063396220 @default.
- W1976226722 date "2008-07-01" @default.
- W1976226722 modified "2023-09-24" @default.
- W1976226722 title "Localization and duality in topology and modular representation theory" @default.
- W1976226722 cites W1512904611 @default.
- W1976226722 cites W1970407889 @default.
- W1976226722 cites W1979635582 @default.
- W1976226722 cites W1992984746 @default.
- W1976226722 cites W1995579478 @default.
- W1976226722 cites W2006790140 @default.
- W1976226722 cites W20134189 @default.
- W1976226722 cites W2023289084 @default.
- W1976226722 cites W2023897267 @default.
- W1976226722 cites W2028618230 @default.
- W1976226722 cites W2045973658 @default.
- W1976226722 cites W2047716057 @default.
- W1976226722 cites W2067160872 @default.
- W1976226722 cites W2069989543 @default.
- W1976226722 cites W2074157415 @default.
- W1976226722 cites W2109216087 @default.
- W1976226722 cites W2124455567 @default.
- W1976226722 cites W2142122833 @default.
- W1976226722 cites W3037999612 @default.
- W1976226722 cites W4210824580 @default.
- W1976226722 cites W4240118550 @default.
- W1976226722 cites W4245847658 @default.
- W1976226722 doi "https://doi.org/10.1016/j.jpaa.2007.12.001" @default.
- W1976226722 hasPublicationYear "2008" @default.
- W1976226722 type Work @default.
- W1976226722 sameAs 1976226722 @default.
- W1976226722 citedByCount "15" @default.
- W1976226722 countsByYear W19762267222017 @default.
- W1976226722 countsByYear W19762267222018 @default.
- W1976226722 countsByYear W19762267222019 @default.
- W1976226722 countsByYear W19762267222020 @default.
- W1976226722 countsByYear W19762267222021 @default.
- W1976226722 countsByYear W19762267222022 @default.
- W1976226722 countsByYear W19762267222023 @default.
- W1976226722 crossrefType "journal-article" @default.
- W1976226722 hasAuthorship W1976226722A5014457852 @default.
- W1976226722 hasAuthorship W1976226722A5063396220 @default.
- W1976226722 hasConcept C111472728 @default.
- W1976226722 hasConcept C114614502 @default.
- W1976226722 hasConcept C118615104 @default.
- W1976226722 hasConcept C136119220 @default.
- W1976226722 hasConcept C138885662 @default.
- W1976226722 hasConcept C151730666 @default.
- W1976226722 hasConcept C172252984 @default.
- W1976226722 hasConcept C178790620 @default.
- W1976226722 hasConcept C184720557 @default.
- W1976226722 hasConcept C185592680 @default.
- W1976226722 hasConcept C197273675 @default.
- W1976226722 hasConcept C202444582 @default.
- W1976226722 hasConcept C203701370 @default.
- W1976226722 hasConcept C2778023678 @default.
- W1976226722 hasConcept C2779343474 @default.
- W1976226722 hasConcept C2780378348 @default.
- W1976226722 hasConcept C2780586882 @default.
- W1976226722 hasConcept C31937215 @default.
- W1976226722 hasConcept C33923547 @default.
- W1976226722 hasConcept C86803240 @default.
- W1976226722 hasConceptScore W1976226722C111472728 @default.
- W1976226722 hasConceptScore W1976226722C114614502 @default.
- W1976226722 hasConceptScore W1976226722C118615104 @default.
- W1976226722 hasConceptScore W1976226722C136119220 @default.
- W1976226722 hasConceptScore W1976226722C138885662 @default.
- W1976226722 hasConceptScore W1976226722C151730666 @default.
- W1976226722 hasConceptScore W1976226722C172252984 @default.
- W1976226722 hasConceptScore W1976226722C178790620 @default.
- W1976226722 hasConceptScore W1976226722C184720557 @default.
- W1976226722 hasConceptScore W1976226722C185592680 @default.
- W1976226722 hasConceptScore W1976226722C197273675 @default.
- W1976226722 hasConceptScore W1976226722C202444582 @default.
- W1976226722 hasConceptScore W1976226722C203701370 @default.
- W1976226722 hasConceptScore W1976226722C2778023678 @default.
- W1976226722 hasConceptScore W1976226722C2779343474 @default.
- W1976226722 hasConceptScore W1976226722C2780378348 @default.
- W1976226722 hasConceptScore W1976226722C2780586882 @default.
- W1976226722 hasConceptScore W1976226722C31937215 @default.
- W1976226722 hasConceptScore W1976226722C33923547 @default.
- W1976226722 hasConceptScore W1976226722C86803240 @default.
- W1976226722 hasIssue "7" @default.
- W1976226722 hasLocation W19762267221 @default.
- W1976226722 hasOpenAccess W1976226722 @default.
- W1976226722 hasPrimaryLocation W19762267221 @default.
- W1976226722 hasRelatedWork W1967104903 @default.
- W1976226722 hasRelatedWork W1976226722 @default.
- W1976226722 hasRelatedWork W2011388952 @default.
- W1976226722 hasRelatedWork W2021915098 @default.
- W1976226722 hasRelatedWork W2065801011 @default.
- W1976226722 hasRelatedWork W2161090157 @default.
- W1976226722 hasRelatedWork W2167154330 @default.
- W1976226722 hasRelatedWork W2439115288 @default.
- W1976226722 hasRelatedWork W2515728299 @default.
- W1976226722 hasRelatedWork W2521296433 @default.