Matches in SemOpenAlex for { <https://semopenalex.org/work/W1976651319> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W1976651319 abstract "Abstract We consider again the problem already treated in [Salvadori (Math. Japon. 49 (1) (1999) 1)] of unconditional stability properties of the solution x=0 of a smooth differential system x =f(t,x) , f(t,0)≡0, for which x=0 is uniformly asymptotically stable for perturbations lying on an appropriate invariant set Φ. Precisely in [Salvadori (1999)] it is assumed that Φ={(t,x) : F(t,x)=0} , where F, F(t,0)≡0, is a smooth first integral. Previously to our research the problem was analyzed for autonomous systems in [Aeyels (Systems and Control Letters, Vol. 19, North-Holland, Amsterdam, 1992)] and for periodic systems in [Peiffer (Rend. Sem. Mat. Univ. Padova, 92 (1994) 165)]. In the present paper we weaken the sufficient condition for the stability of the origin given in [Salvadori (1999)] (Φ-positive definitiveness of F). The sufficiency is preserved but the new condition is also necessary for uniform stability and then necessary and sufficient for stability in the periodic case. The results follow from the connections which have been found between the stability of the origin and the stability of the set Φ (for perturbations close to the origin). Even the asymptotic stability of x=0 appears to be connected to corresponding asymptotic stability properties of Φ. If the differential system is periodic, the origin and Φ have the same stability properties. If the differential system is autonomous the results are extendable to the stability of a compact invariant set M. In particular it is shown that M and Φ have the same stability properties. This statement still holds if F=0 is a t-independent invariant integral, with F not necessarily a first integral. This latter result is illustrated through its application to a bifurcation problem." @default.
- W1976651319 created "2016-06-24" @default.
- W1976651319 creator A5043684203 @default.
- W1976651319 creator A5077567628 @default.
- W1976651319 date "2003-10-01" @default.
- W1976651319 modified "2023-10-01" @default.
- W1976651319 title "First and invariant integrals in stability problems" @default.
- W1976651319 cites W1543651123 @default.
- W1976651319 cites W1603340857 @default.
- W1976651319 cites W1967792696 @default.
- W1976651319 cites W2007634112 @default.
- W1976651319 cites W2035695789 @default.
- W1976651319 cites W2057061442 @default.
- W1976651319 cites W2735744288 @default.
- W1976651319 doi "https://doi.org/10.1016/s0362-546x(03)00220-7" @default.
- W1976651319 hasPublicationYear "2003" @default.
- W1976651319 type Work @default.
- W1976651319 sameAs 1976651319 @default.
- W1976651319 citedByCount "1" @default.
- W1976651319 crossrefType "journal-article" @default.
- W1976651319 hasAuthorship W1976651319A5043684203 @default.
- W1976651319 hasAuthorship W1976651319A5077567628 @default.
- W1976651319 hasConcept C112972136 @default.
- W1976651319 hasConcept C119857082 @default.
- W1976651319 hasConcept C121332964 @default.
- W1976651319 hasConcept C134306372 @default.
- W1976651319 hasConcept C158622935 @default.
- W1976651319 hasConcept C167964875 @default.
- W1976651319 hasConcept C190470478 @default.
- W1976651319 hasConcept C202444582 @default.
- W1976651319 hasConcept C33923547 @default.
- W1976651319 hasConcept C37914503 @default.
- W1976651319 hasConcept C41008148 @default.
- W1976651319 hasConcept C41949839 @default.
- W1976651319 hasConcept C62520636 @default.
- W1976651319 hasConceptScore W1976651319C112972136 @default.
- W1976651319 hasConceptScore W1976651319C119857082 @default.
- W1976651319 hasConceptScore W1976651319C121332964 @default.
- W1976651319 hasConceptScore W1976651319C134306372 @default.
- W1976651319 hasConceptScore W1976651319C158622935 @default.
- W1976651319 hasConceptScore W1976651319C167964875 @default.
- W1976651319 hasConceptScore W1976651319C190470478 @default.
- W1976651319 hasConceptScore W1976651319C202444582 @default.
- W1976651319 hasConceptScore W1976651319C33923547 @default.
- W1976651319 hasConceptScore W1976651319C37914503 @default.
- W1976651319 hasConceptScore W1976651319C41008148 @default.
- W1976651319 hasConceptScore W1976651319C41949839 @default.
- W1976651319 hasConceptScore W1976651319C62520636 @default.
- W1976651319 hasLocation W19766513191 @default.
- W1976651319 hasOpenAccess W1976651319 @default.
- W1976651319 hasPrimaryLocation W19766513191 @default.
- W1976651319 hasRelatedWork W1981909949 @default.
- W1976651319 hasRelatedWork W2012169275 @default.
- W1976651319 hasRelatedWork W2062746672 @default.
- W1976651319 hasRelatedWork W2129596013 @default.
- W1976651319 hasRelatedWork W2529782299 @default.
- W1976651319 hasRelatedWork W2601471357 @default.
- W1976651319 hasRelatedWork W2767905351 @default.
- W1976651319 hasRelatedWork W2963579925 @default.
- W1976651319 hasRelatedWork W3181599934 @default.
- W1976651319 hasRelatedWork W4249580765 @default.
- W1976651319 isParatext "false" @default.
- W1976651319 isRetracted "false" @default.
- W1976651319 magId "1976651319" @default.
- W1976651319 workType "article" @default.