Matches in SemOpenAlex for { <https://semopenalex.org/work/W1976688284> ?p ?o ?g. }
- W1976688284 endingPage "2017" @default.
- W1976688284 startingPage "2006" @default.
- W1976688284 abstract "Purpose: To prove the ability of protons to reproduce a dose gradient that matches a dose painting by numbers (DPBN) prescription in the presence of setup and range errors, by using contours and structure‐based optimization in a commercial treatment planning system. Methods: For two patients with head and neck cancer, voxel‐by‐voxel prescription to the target volume (GTV PET ) was calculated from 18 FDG‐PET images and approximated with several discrete prescription subcontours. Treatments were planned with proton pencil beam scanning. In order to determine the optimal plan parameters to approach the DPBN prescription, the effects of the scanning pattern, number of fields, number of subcontours, and use of range shifter were separately tested on each patient. Different constant scanning grids (i.e., spot spacing = Δ x = Δ y = 3.5, 4, and 5 mm) and uniform energy layer separation [4 and 5 mm WED (water equivalent distance)] were analyzed versus a dynamic and automatic selection of the spots grid. The number of subcontours was increased from 3 to 11 while the number of beams was set to 3, 5, or 7. Conventional PTV‐based and robust clinical target volumes (CTV)‐based optimization strategies were considered and their robustness against range and setup errors assessed. Because of the nonuniform prescription, ensuring robustness for coverage of GTV PET inevitably leads to overdosing, which was compared for both optimization schemes. Results: The optimal number of subcontours ranged from 5 to 7 for both patients. All considered scanning grids achieved accurate dose painting (1% average difference between the prescribed and planned doses). PTV‐based plans led to nonrobust target coverage while robust‐optimized plans improved it considerably (differences between worst‐case CTV dose and the clinical constraint was up to 3 Gy for PTV‐based plans and did not exceed 1 Gy for robust CTV‐based plans). Also, only 15% of the points in the GTV PET (worst case) were above 5% of DPBN prescription for robust‐optimized plans, while they were more than 50% for PTV plans. Low dose to organs at risk (OARs) could be achieved for both PTV and robust‐optimized plans. Conclusions: DPBN in proton therapy is feasible with the use of a sufficient number subcontours, automatically generated scanning patterns, and no more than three beams are needed. Robust optimization ensured the required target coverage and minimal overdosing, while PTV‐approach led to nonrobust plans with excessive overdose. Low dose to OARs can be achieved even in the presence of a high‐dose escalation as in DPBN." @default.
- W1976688284 created "2016-06-24" @default.
- W1976688284 creator A5002329936 @default.
- W1976688284 creator A5003105751 @default.
- W1976688284 creator A5007892780 @default.
- W1976688284 creator A5012591763 @default.
- W1976688284 creator A5050270794 @default.
- W1976688284 date "2015-03-30" @default.
- W1976688284 modified "2023-10-10" @default.
- W1976688284 title "Feasibility and robustness of dose painting by numbers in proton therapy with contour‐driven plan optimization" @default.
- W1976688284 cites W1708843477 @default.
- W1976688284 cites W1964750603 @default.
- W1976688284 cites W1969907047 @default.
- W1976688284 cites W1973177485 @default.
- W1976688284 cites W1976594584 @default.
- W1976688284 cites W1984495607 @default.
- W1976688284 cites W1990921424 @default.
- W1976688284 cites W2003585548 @default.
- W1976688284 cites W2011307344 @default.
- W1976688284 cites W2015341124 @default.
- W1976688284 cites W2015397927 @default.
- W1976688284 cites W2021047551 @default.
- W1976688284 cites W2025633794 @default.
- W1976688284 cites W2044130197 @default.
- W1976688284 cites W2055233491 @default.
- W1976688284 cites W2061565656 @default.
- W1976688284 cites W2064712772 @default.
- W1976688284 cites W2083837664 @default.
- W1976688284 cites W2093400737 @default.
- W1976688284 cites W2095272243 @default.
- W1976688284 cites W2103101993 @default.
- W1976688284 cites W2114364204 @default.
- W1976688284 cites W2118934545 @default.
- W1976688284 cites W2125673755 @default.
- W1976688284 cites W2127494183 @default.
- W1976688284 cites W2128410323 @default.
- W1976688284 cites W2130443041 @default.
- W1976688284 cites W2141988766 @default.
- W1976688284 doi "https://doi.org/10.1118/1.4915082" @default.
- W1976688284 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25832091" @default.
- W1976688284 hasPublicationYear "2015" @default.
- W1976688284 type Work @default.
- W1976688284 sameAs 1976688284 @default.
- W1976688284 citedByCount "11" @default.
- W1976688284 countsByYear W19766882842016 @default.
- W1976688284 countsByYear W19766882842017 @default.
- W1976688284 countsByYear W19766882842018 @default.
- W1976688284 countsByYear W19766882842019 @default.
- W1976688284 countsByYear W19766882842020 @default.
- W1976688284 countsByYear W19766882842022 @default.
- W1976688284 countsByYear W19766882842023 @default.
- W1976688284 crossrefType "journal-article" @default.
- W1976688284 hasAuthorship W1976688284A5002329936 @default.
- W1976688284 hasAuthorship W1976688284A5003105751 @default.
- W1976688284 hasAuthorship W1976688284A5007892780 @default.
- W1976688284 hasAuthorship W1976688284A5012591763 @default.
- W1976688284 hasAuthorship W1976688284A5050270794 @default.
- W1976688284 hasConcept C104317684 @default.
- W1976688284 hasConcept C120665830 @default.
- W1976688284 hasConcept C121332964 @default.
- W1976688284 hasConcept C154945302 @default.
- W1976688284 hasConcept C168834538 @default.
- W1976688284 hasConcept C185592680 @default.
- W1976688284 hasConcept C2775881188 @default.
- W1976688284 hasConcept C2779244869 @default.
- W1976688284 hasConcept C2989005 @default.
- W1976688284 hasConcept C31601959 @default.
- W1976688284 hasConcept C33923547 @default.
- W1976688284 hasConcept C41008148 @default.
- W1976688284 hasConcept C54170458 @default.
- W1976688284 hasConcept C55493867 @default.
- W1976688284 hasConcept C63479239 @default.
- W1976688284 hasConcept C71924100 @default.
- W1976688284 hasConcept C75088862 @default.
- W1976688284 hasConceptScore W1976688284C104317684 @default.
- W1976688284 hasConceptScore W1976688284C120665830 @default.
- W1976688284 hasConceptScore W1976688284C121332964 @default.
- W1976688284 hasConceptScore W1976688284C154945302 @default.
- W1976688284 hasConceptScore W1976688284C168834538 @default.
- W1976688284 hasConceptScore W1976688284C185592680 @default.
- W1976688284 hasConceptScore W1976688284C2775881188 @default.
- W1976688284 hasConceptScore W1976688284C2779244869 @default.
- W1976688284 hasConceptScore W1976688284C2989005 @default.
- W1976688284 hasConceptScore W1976688284C31601959 @default.
- W1976688284 hasConceptScore W1976688284C33923547 @default.
- W1976688284 hasConceptScore W1976688284C41008148 @default.
- W1976688284 hasConceptScore W1976688284C54170458 @default.
- W1976688284 hasConceptScore W1976688284C55493867 @default.
- W1976688284 hasConceptScore W1976688284C63479239 @default.
- W1976688284 hasConceptScore W1976688284C71924100 @default.
- W1976688284 hasConceptScore W1976688284C75088862 @default.
- W1976688284 hasFunder F4320321390 @default.
- W1976688284 hasIssue "4" @default.
- W1976688284 hasLocation W19766882841 @default.
- W1976688284 hasLocation W19766882842 @default.
- W1976688284 hasOpenAccess W1976688284 @default.
- W1976688284 hasPrimaryLocation W19766882841 @default.
- W1976688284 hasRelatedWork W1973124468 @default.