Matches in SemOpenAlex for { <https://semopenalex.org/work/W1976863970> ?p ?o ?g. }
- W1976863970 endingPage "e112980" @default.
- W1976863970 startingPage "e112980" @default.
- W1976863970 abstract "Effective diagnosis of tuberculosis (TB) relies on accurate interpretation of radiological patterns found in a chest radiograph (CXR). Lack of skilled radiologists and other resources, especially in developing countries, hinders its efficient diagnosis. Computer-aided diagnosis (CAD) methods provide second opinion to the radiologists for their findings and thereby assist in better diagnosis of cancer and other diseases including TB. However, existing CAD methods for TB are based on the extraction of textural features from manually or semi-automatically segmented CXRs. These methods are prone to errors and cannot be implemented in X-ray machines for automated classification.Gabor, Gist, histogram of oriented gradients (HOG), and pyramid histogram of oriented gradients (PHOG) features extracted from the whole image can be implemented into existing X-ray machines to discriminate between TB and non-TB CXRs in an automated manner. Localized features were extracted for the above methods using various parameters, such as frequency range, blocks and region of interest. The performance of these features was evaluated against textural features. Two digital CXR image datasets (8-bit DA and 14-bit DB) were used for evaluating the performance of these features.Gist (accuracy 94.2% for DA, 86.0% for DB) and PHOG (accuracy 92.3% for DA, 92.0% for DB) features provided better results for both the datasets. These features were implemented to develop a MATLAB toolbox, TB-Xpredict, which is freely available for academic use at http://sourceforge.net/projects/tbxpredict/. This toolbox provides both automated training and prediction modules and does not require expertise in image processing for operation.Since the features used in TB-Xpredict do not require segmentation, the toolbox can easily be implemented in X-ray machines. This toolbox can effectively be used for the mass screening of TB in high-burden areas with improved efficiency." @default.
- W1976863970 created "2016-06-24" @default.
- W1976863970 creator A5024247758 @default.
- W1976863970 creator A5025353446 @default.
- W1976863970 creator A5066854856 @default.
- W1976863970 date "2014-11-12" @default.
- W1976863970 modified "2023-10-02" @default.
- W1976863970 title "Role of Gist and PHOG Features in Computer-Aided Diagnosis of Tuberculosis without Segmentation" @default.
- W1976863970 cites W1532257412 @default.
- W1976863970 cites W1563755836 @default.
- W1976863970 cites W1566135517 @default.
- W1976863970 cites W1968114652 @default.
- W1976863970 cites W2006617902 @default.
- W1976863970 cites W2007203285 @default.
- W1976863970 cites W2026356722 @default.
- W1976863970 cites W2029382114 @default.
- W1976863970 cites W2039286784 @default.
- W1976863970 cites W2044465660 @default.
- W1976863970 cites W2096127742 @default.
- W1976863970 cites W2104960492 @default.
- W1976863970 cites W2107806345 @default.
- W1976863970 cites W2112834177 @default.
- W1976863970 cites W2115597079 @default.
- W1976863970 cites W2119903037 @default.
- W1976863970 cites W2125148312 @default.
- W1976863970 cites W2127807804 @default.
- W1976863970 cites W2133990480 @default.
- W1976863970 cites W2141619730 @default.
- W1976863970 cites W2153425333 @default.
- W1976863970 cites W2153635508 @default.
- W1976863970 cites W2155882537 @default.
- W1976863970 cites W2157597800 @default.
- W1976863970 cites W2161969291 @default.
- W1976863970 cites W2168805745 @default.
- W1976863970 cites W2328176404 @default.
- W1976863970 cites W4239510810 @default.
- W1976863970 doi "https://doi.org/10.1371/journal.pone.0112980" @default.
- W1976863970 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4229306" @default.
- W1976863970 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25390291" @default.
- W1976863970 hasPublicationYear "2014" @default.
- W1976863970 type Work @default.
- W1976863970 sameAs 1976863970 @default.
- W1976863970 citedByCount "68" @default.
- W1976863970 countsByYear W19768639702015 @default.
- W1976863970 countsByYear W19768639702016 @default.
- W1976863970 countsByYear W19768639702017 @default.
- W1976863970 countsByYear W19768639702018 @default.
- W1976863970 countsByYear W19768639702019 @default.
- W1976863970 countsByYear W19768639702020 @default.
- W1976863970 countsByYear W19768639702021 @default.
- W1976863970 countsByYear W19768639702022 @default.
- W1976863970 countsByYear W19768639702023 @default.
- W1976863970 crossrefType "journal-article" @default.
- W1976863970 hasAuthorship W1976863970A5024247758 @default.
- W1976863970 hasAuthorship W1976863970A5025353446 @default.
- W1976863970 hasAuthorship W1976863970A5066854856 @default.
- W1976863970 hasBestOaLocation W19768639701 @default.
- W1976863970 hasConcept C115961682 @default.
- W1976863970 hasConcept C127413603 @default.
- W1976863970 hasConcept C142575187 @default.
- W1976863970 hasConcept C142724271 @default.
- W1976863970 hasConcept C153180895 @default.
- W1976863970 hasConcept C154945302 @default.
- W1976863970 hasConcept C16930146 @default.
- W1976863970 hasConcept C17426736 @default.
- W1976863970 hasConcept C194789388 @default.
- W1976863970 hasConcept C199360897 @default.
- W1976863970 hasConcept C199639397 @default.
- W1976863970 hasConcept C2524010 @default.
- W1976863970 hasConcept C2775922572 @default.
- W1976863970 hasConcept C2777655017 @default.
- W1976863970 hasConcept C2777904410 @default.
- W1976863970 hasConcept C2779549770 @default.
- W1976863970 hasConcept C31972630 @default.
- W1976863970 hasConcept C33923547 @default.
- W1976863970 hasConcept C41008148 @default.
- W1976863970 hasConcept C53533937 @default.
- W1976863970 hasConcept C71924100 @default.
- W1976863970 hasConcept C89600930 @default.
- W1976863970 hasConceptScore W1976863970C115961682 @default.
- W1976863970 hasConceptScore W1976863970C127413603 @default.
- W1976863970 hasConceptScore W1976863970C142575187 @default.
- W1976863970 hasConceptScore W1976863970C142724271 @default.
- W1976863970 hasConceptScore W1976863970C153180895 @default.
- W1976863970 hasConceptScore W1976863970C154945302 @default.
- W1976863970 hasConceptScore W1976863970C16930146 @default.
- W1976863970 hasConceptScore W1976863970C17426736 @default.
- W1976863970 hasConceptScore W1976863970C194789388 @default.
- W1976863970 hasConceptScore W1976863970C199360897 @default.
- W1976863970 hasConceptScore W1976863970C199639397 @default.
- W1976863970 hasConceptScore W1976863970C2524010 @default.
- W1976863970 hasConceptScore W1976863970C2775922572 @default.
- W1976863970 hasConceptScore W1976863970C2777655017 @default.
- W1976863970 hasConceptScore W1976863970C2777904410 @default.
- W1976863970 hasConceptScore W1976863970C2779549770 @default.
- W1976863970 hasConceptScore W1976863970C31972630 @default.
- W1976863970 hasConceptScore W1976863970C33923547 @default.
- W1976863970 hasConceptScore W1976863970C41008148 @default.