Matches in SemOpenAlex for { <https://semopenalex.org/work/W1976989419> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W1976989419 endingPage "246" @default.
- W1976989419 startingPage "217" @default.
- W1976989419 abstract "The Congruence Lattice Problem (CLP), stated by R. P. Dilworth in the forties, asks whether every distributive {∨, 0}-semilattice S is isomorphic to the semilattice Con c L of compact congruences of a lattice L. While this problem is still open, many partial solutions have been obtained, positive and negative as well. The solution to CLP is known to be positive for all S such that |S|≤ℵ 1 . Furthermore, one can then take Lwith permutable congruences. This contrasts with the case where |S|≥ℵ 2 , where there are counterexamples S for which Lcannot be, for example, sectionally complemented. We prove in this paper that the lattices of these counterexamples cannot have permutable congruences as well. We also isolate finite, combinatorial analogues of these results. All the finite statements that we obtain are amalgamation properties of the Con c functor. The strongest known positive results, which originate in earlier work by the first author, imply that many diagrams of semilattices indexed by the square2 2 can be lifted with respect to the Con c functor. We prove that the latter results cannot be extended to the cube, 2 3 . In particular, we give an example of a cube diagram of finite Boolean semilattices and semilattice embeddings that cannot be lifted, with respect to the Con c functor, by lattices with permutable congruences. We also extend many of our results to lattices with almost permutable congruences, that is, α∨β=αβ ∪βα, for all congruences α and β. We conclude the paper with a very short proof that no functor from finite Boolean semilattices to lattices can lift the Con c functor on finite Boolean semilattices." @default.
- W1976989419 created "2016-06-24" @default.
- W1976989419 creator A5056961335 @default.
- W1976989419 creator A5073101686 @default.
- W1976989419 date "2001-04-01" @default.
- W1976989419 modified "2023-09-23" @default.
- W1976989419 title "SIMULTANEOUS REPRESENTATIONS OF SEMILATTICES BY LATTICES WITH PERMUTABLE CONGRUENCES" @default.
- W1976989419 cites W1615794678 @default.
- W1976989419 cites W1692300218 @default.
- W1976989419 cites W2013060726 @default.
- W1976989419 cites W2027813278 @default.
- W1976989419 cites W2039312633 @default.
- W1976989419 cites W2963935101 @default.
- W1976989419 cites W4245355472 @default.
- W1976989419 cites W819630205 @default.
- W1976989419 doi "https://doi.org/10.1142/s0218196701000516" @default.
- W1976989419 hasPublicationYear "2001" @default.
- W1976989419 type Work @default.
- W1976989419 sameAs 1976989419 @default.
- W1976989419 citedByCount "28" @default.
- W1976989419 countsByYear W19769894192014 @default.
- W1976989419 countsByYear W19769894192020 @default.
- W1976989419 crossrefType "journal-article" @default.
- W1976989419 hasAuthorship W1976989419A5056961335 @default.
- W1976989419 hasAuthorship W1976989419A5073101686 @default.
- W1976989419 hasBestOaLocation W19769894192 @default.
- W1976989419 hasConcept C114614502 @default.
- W1976989419 hasConcept C11821877 @default.
- W1976989419 hasConcept C118615104 @default.
- W1976989419 hasConcept C121332964 @default.
- W1976989419 hasConcept C132170107 @default.
- W1976989419 hasConcept C156772000 @default.
- W1976989419 hasConcept C162838799 @default.
- W1976989419 hasConcept C199581761 @default.
- W1976989419 hasConcept C202444582 @default.
- W1976989419 hasConcept C207405024 @default.
- W1976989419 hasConcept C24890656 @default.
- W1976989419 hasConcept C2780069185 @default.
- W1976989419 hasConcept C2781204021 @default.
- W1976989419 hasConcept C33923547 @default.
- W1976989419 hasConcept C9973445 @default.
- W1976989419 hasConceptScore W1976989419C114614502 @default.
- W1976989419 hasConceptScore W1976989419C11821877 @default.
- W1976989419 hasConceptScore W1976989419C118615104 @default.
- W1976989419 hasConceptScore W1976989419C121332964 @default.
- W1976989419 hasConceptScore W1976989419C132170107 @default.
- W1976989419 hasConceptScore W1976989419C156772000 @default.
- W1976989419 hasConceptScore W1976989419C162838799 @default.
- W1976989419 hasConceptScore W1976989419C199581761 @default.
- W1976989419 hasConceptScore W1976989419C202444582 @default.
- W1976989419 hasConceptScore W1976989419C207405024 @default.
- W1976989419 hasConceptScore W1976989419C24890656 @default.
- W1976989419 hasConceptScore W1976989419C2780069185 @default.
- W1976989419 hasConceptScore W1976989419C2781204021 @default.
- W1976989419 hasConceptScore W1976989419C33923547 @default.
- W1976989419 hasConceptScore W1976989419C9973445 @default.
- W1976989419 hasIssue "02" @default.
- W1976989419 hasLocation W19769894191 @default.
- W1976989419 hasLocation W19769894192 @default.
- W1976989419 hasLocation W19769894193 @default.
- W1976989419 hasLocation W19769894194 @default.
- W1976989419 hasLocation W19769894195 @default.
- W1976989419 hasLocation W19769894196 @default.
- W1976989419 hasLocation W19769894197 @default.
- W1976989419 hasLocation W19769894198 @default.
- W1976989419 hasOpenAccess W1976989419 @default.
- W1976989419 hasPrimaryLocation W19769894191 @default.
- W1976989419 hasRelatedWork W1976989419 @default.
- W1976989419 hasRelatedWork W1999512029 @default.
- W1976989419 hasRelatedWork W2081227916 @default.
- W1976989419 hasRelatedWork W220970603 @default.
- W1976989419 hasRelatedWork W2528524694 @default.
- W1976989419 hasRelatedWork W2949325414 @default.
- W1976989419 hasRelatedWork W2949926183 @default.
- W1976989419 hasRelatedWork W2951488937 @default.
- W1976989419 hasRelatedWork W3011046085 @default.
- W1976989419 hasRelatedWork W4235011286 @default.
- W1976989419 hasVolume "11" @default.
- W1976989419 isParatext "false" @default.
- W1976989419 isRetracted "false" @default.
- W1976989419 magId "1976989419" @default.
- W1976989419 workType "article" @default.