Matches in SemOpenAlex for { <https://semopenalex.org/work/W1977058788> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W1977058788 abstract "By means of magneto hydrodynamic modelling based on magnetic vector potential and UDF programming, a numerical simulation is conducted for the heat transfer and flow process in the free-burning arc, which enables the coupling calculation of flow field and electromagnetic field. In consideration of the catholic tip melting and the copper vapor generated by anodic copper sheet evaporation during the arc burning process, the interaction between arc and vapor is analyzed and the influence of electrode melting on the flow and heat transfer of plasma arc is therefore fully understood, making the calculation model better represent the actual situation. Introduction Plasma arc technology has been widely applied in metallurgy, spray coating, cutting and organic waste disposal sectors. During the arc burning process, the conductive thermal plasma can be formed. Taking plasma as the continuum, numerical simulation of arc is carried out with the aid of magnetohydrodynamic model. Hsu [1] and his team completed numerical simulation of free-burning argon arc in the first place and conducted spectral measurement. With the deepening of the research on arc, Li Hoping [3] and his team from Tsinghua University studied the influence of the sheath on temperature field, while Ambles [8] and D. Bernard [9] researched the influence of external magnetic field on free-burning arc. In addition, as listed in References , Flag researched the electrode ablation in free-burning arc, but failed to analyze the influence of electrode ablation on arc flow field; in References . This paper presents the coupled solutions to the equation sets of flow field and electromagnetic field by using magneto hydrodynamic modelling based on magnetic vector potential and the redeveloped hydromechanics-oriented software FLUENT. Magneto hydrodynamic (MHD) Model The magneto hydrodynamic model based on magnetic vector potential is adopted in the paper. For basic assumption and governing equation, see Reference . In order to complete coupling calculation of momentum equation, the circumferential component Bθ of the self-induction magnetic field intensity shall be solved. The following integrals are adopted in References [1-3]: r 0 x 0 j d r Bθ μ x x = ∫ (1) The complicated integral calculation can be effectively avoided by expressing the magnetic field intensity in the magnetic vector potential model in the following form: =∇× B A (2) Ampere's law 0 =μ ∇×B J can be rewritten into Poisson equation in the following form through Formula (2): 2 0 =μ ∇ A � J (3) Where 0 μ is the vacuum magnetic permeability ( 7 4 10 H / m π − × ). The following can be obtained by projecting (3) on the coordinate axis: x x 0 x 1 r j r r r x x A A μ ∂ ∂ ∂ ∂ + = − ∂ ∂ ∂ ∂ ( ) ( ) (4) International Conference on Materials, Environmental and Biological Engineering (MEBE 2015) © 2015. The authors Published by Atlantis Press 629 r r r 0 r 2 1 r j r r r x x r A A A μ ∂ ∂ ∂ ∂ + = − + ∂ ∂ ∂ ∂ ( ) ( ) (5) Equations (4) and (5) are the scalar equations of magnetic vector potential. After the magnetic vector potential is calculated from two formulas, the magnetic field intensity can be directly calculated through (2). Under the 2-dimensional axially symmetric coordinates, the magnetic field intensity is: r x = x r A A Bθ ∂ ∂ ∂ ∂ (6) Numerical Simulation of Plasma Arc based on FLUENT FLUENT is one of CFD software widely used in the world at present, which can simulate flow, heat transfer, combustion and other processes. In recent years, overseas scholars have applied the redeveloped FLUENT in the research of plasma arc. Murphy [10] gives the thermodynamic properties and transport coefficients of commonly used gas plasma within a wide temperature range through theoretical calculation. Data in Reference [10] is quoted in the paper. Boundary conditions The computational domain aimed at analysis and calculation in the paper is as shown in Figure 1, and boundary conditions are listed in Table 1. Axial symmetry boundary conditions are used on the center line AB. On BC plane, no-slip boundary conditions are adopted, and the electrical potential is constant. There is no electric current passing through the outflow CD, and the gas flow rate is maintained balanced with that of the inflow. Fig. 1 Schematic diagram of free-burning arc gear Table 1 MHD model boundary conditions AB BC CD DE EA u 0 u r ∂ = ∂ u=0 0 u r ∂ = ∂ 0 u r r ∂ = ∂ u=0 v v=0 v=0 v C r ∂ = ∂ v=0 v=0 T T 0 r ∂ = ∂ 1000K 300K 300K 3000K φ 0 r φ ∂ = ∂ 0 φ = 0 r φ ∂ = ∂ 0 r φ ∂ = ∂ Formula (7) x A 0 x A r ∂ = ∂ 0 x A r ∂ = ∂ 0 0 x A r ∂ = ∂ 0 x A r ∂ = ∂ r A 0 r A r ∂ = ∂ 0 r A r ∂ = ∂ 0 0 r A r ∂ = ∂ 0 r A r ∂ = ∂ Discussion on the rationality of boundary conditions and initialization settings of the current continuity equation. In the setting of the whole MHD boundary conditions, the most important is the current density on cathode AE surface. According to Richardson Dushman formula / 2 j B k T AT e φ − = ( ), thermionic emission completely depends on temperature. In the formula, A is the constant, and c φ is the work function. There is a certain difficulty in directly calculating max j through Richardson Dushman formula, because the work function of cathode surface material and its actual temperature" @default.
- W1977058788 created "2016-06-24" @default.
- W1977058788 creator A5022499603 @default.
- W1977058788 creator A5029667848 @default.
- W1977058788 creator A5055087231 @default.
- W1977058788 creator A5084134658 @default.
- W1977058788 date "2015-01-01" @default.
- W1977058788 modified "2023-09-28" @default.
- W1977058788 title "Research of Magnetotydrodynamics in a Free-Burning" @default.
- W1977058788 doi "https://doi.org/10.2991/mebe-15.2015.145" @default.
- W1977058788 hasPublicationYear "2015" @default.
- W1977058788 type Work @default.
- W1977058788 sameAs 1977058788 @default.
- W1977058788 citedByCount "0" @default.
- W1977058788 crossrefType "proceedings-article" @default.
- W1977058788 hasAuthorship W1977058788A5022499603 @default.
- W1977058788 hasAuthorship W1977058788A5029667848 @default.
- W1977058788 hasAuthorship W1977058788A5055087231 @default.
- W1977058788 hasAuthorship W1977058788A5084134658 @default.
- W1977058788 hasBestOaLocation W19770587881 @default.
- W1977058788 hasConcept C114375839 @default.
- W1977058788 hasConcept C115260700 @default.
- W1977058788 hasConcept C121332964 @default.
- W1977058788 hasConcept C127413603 @default.
- W1977058788 hasConcept C147789679 @default.
- W1977058788 hasConcept C17525397 @default.
- W1977058788 hasConcept C185592680 @default.
- W1977058788 hasConcept C192562407 @default.
- W1977058788 hasConcept C206615322 @default.
- W1977058788 hasConcept C31532427 @default.
- W1977058788 hasConcept C42471609 @default.
- W1977058788 hasConcept C50517652 @default.
- W1977058788 hasConcept C57879066 @default.
- W1977058788 hasConcept C62520636 @default.
- W1977058788 hasConcept C78519656 @default.
- W1977058788 hasConcept C82706917 @default.
- W1977058788 hasConcept C83415579 @default.
- W1977058788 hasConceptScore W1977058788C114375839 @default.
- W1977058788 hasConceptScore W1977058788C115260700 @default.
- W1977058788 hasConceptScore W1977058788C121332964 @default.
- W1977058788 hasConceptScore W1977058788C127413603 @default.
- W1977058788 hasConceptScore W1977058788C147789679 @default.
- W1977058788 hasConceptScore W1977058788C17525397 @default.
- W1977058788 hasConceptScore W1977058788C185592680 @default.
- W1977058788 hasConceptScore W1977058788C192562407 @default.
- W1977058788 hasConceptScore W1977058788C206615322 @default.
- W1977058788 hasConceptScore W1977058788C31532427 @default.
- W1977058788 hasConceptScore W1977058788C42471609 @default.
- W1977058788 hasConceptScore W1977058788C50517652 @default.
- W1977058788 hasConceptScore W1977058788C57879066 @default.
- W1977058788 hasConceptScore W1977058788C62520636 @default.
- W1977058788 hasConceptScore W1977058788C78519656 @default.
- W1977058788 hasConceptScore W1977058788C82706917 @default.
- W1977058788 hasConceptScore W1977058788C83415579 @default.
- W1977058788 hasLocation W19770587881 @default.
- W1977058788 hasOpenAccess W1977058788 @default.
- W1977058788 hasPrimaryLocation W19770587881 @default.
- W1977058788 hasRelatedWork W1489141362 @default.
- W1977058788 hasRelatedWork W1538239944 @default.
- W1977058788 hasRelatedWork W1561063191 @default.
- W1977058788 hasRelatedWork W1923610197 @default.
- W1977058788 hasRelatedWork W1987100902 @default.
- W1977058788 hasRelatedWork W1993833070 @default.
- W1977058788 hasRelatedWork W2003537866 @default.
- W1977058788 hasRelatedWork W2021025363 @default.
- W1977058788 hasRelatedWork W2036775227 @default.
- W1977058788 hasRelatedWork W2075577600 @default.
- W1977058788 hasRelatedWork W2079715144 @default.
- W1977058788 hasRelatedWork W2103706001 @default.
- W1977058788 hasRelatedWork W2105157690 @default.
- W1977058788 hasRelatedWork W2107656958 @default.
- W1977058788 hasRelatedWork W2162994247 @default.
- W1977058788 hasRelatedWork W2170718277 @default.
- W1977058788 hasRelatedWork W2368643193 @default.
- W1977058788 hasRelatedWork W2469564852 @default.
- W1977058788 hasRelatedWork W1965517265 @default.
- W1977058788 hasRelatedWork W2090080239 @default.
- W1977058788 isParatext "false" @default.
- W1977058788 isRetracted "false" @default.
- W1977058788 magId "1977058788" @default.
- W1977058788 workType "article" @default.