Matches in SemOpenAlex for { <https://semopenalex.org/work/W1977471107> ?p ?o ?g. }
- W1977471107 endingPage "322" @default.
- W1977471107 startingPage "305" @default.
- W1977471107 abstract "The B and Pb isotope systems are widely applied tracers of recycling processes occurring during subduction. Studies examining these complementary systems as a pair enjoy considerable success, where B primarily records the thermal and fluid evolution of the subducting slab, whereas the tripartite Pb system constrains the source of subducted material returned to volcanic arcs. However, interpretations derived from the arc volcanic record critically depend upon assumptions regarding compositions of unmetamorphosed inputs to subduction zones. Few studies have directly addressed potential fractionation of B isotopes and U–Th–Pb by analysis of high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic suites, despite that fractionation in these systems during subduction-zone metamorphism has been inferred in many studies of volcanic arcs and ocean–island basalts. Here, we address the metamorphic evolution of subducted material with B and Pb isotope determinations for the mélange matrix of the Catalina Schist, CA. Within the Catalina Schist, mélange matrix formed through the synergistic effects of metasomatism and deformation, affecting basalts and sediments derived from the subducting Farallon plate with peridotites derived from the overlying mantle wedge. Models of simple mechanical mixing among these end-members broadly predict both B and Pb concentrations within hybridized schistose mélange matrix, but an explanation of isotope ratios for both systems requires significant fractionation during metamorphism. The B isotope results are compatible with the previously presented model for sources and transport of fluid within the Catalina Schist subduction zone based on O and H isotope data: δ11B values for the amphibolite facies mélange matrix are consistent with infiltration by B-bearing fluid produced in lower-T metasediment-rich domains, whereas the lower-grade lawsonite–albite and lawsonite–blueschist tectonometamorphic units represent possible analogs for the sources of this B-bearing fluid. Overall, Pb isotope ratios are indistinguishable as a function of metamorphic grade and are highly radiogenic. We constrained the potential influence of radiogenic continental detritus to the Catalina subduction zone by estimation of the continental input component from detrital zircon U–Pb age spectra. This zircon-based sedimentation proxy demonstrates that the potential influence of the Mesozoic California Andean-type convergent margin cannot in all cases explain the radiogenic Pb signature of the Catalina mélange matrix, seemingly requiring some fractionation of the U–Th–Pb system during formation of the lawsonite–albite and lawsonite–blueschist mélange units. Pb isotope signatures of the lower-grade mélange matrix can be explained by a two-stage metamorphic fractionation model involving early loss of Pb by desulfidation reactions, followed by deeper loss of silicate U, during subduction. Pb signatures of the amphibolite facies mélange matrix suggest either efficient retention of protolith Pb signatures during metamorphism or faithful transfer of the fractionated Pb signature by metamorphic fluid flow. Contamination of the mantle wedge by Catalina Schist B and Pb isotope fluid signatures can explain B–Pb isotope anomalies observed for modern arcs, indicating that the effects of mélange mixing should be considered in models of subduction-zone mass transfer." @default.
- W1977471107 created "2016-06-24" @default.
- W1977471107 creator A5015773109 @default.
- W1977471107 creator A5016072992 @default.
- W1977471107 creator A5029351425 @default.
- W1977471107 creator A5029814244 @default.
- W1977471107 creator A5046006003 @default.
- W1977471107 date "2007-04-01" @default.
- W1977471107 modified "2023-10-15" @default.
- W1977471107 title "Boron and lead isotope signatures of subduction-zone mélange formation: Hybridization and fractionation along the slab–mantle interface beneath volcanic arcs" @default.
- W1977471107 cites W1552583707 @default.
- W1977471107 cites W1620068702 @default.
- W1977471107 cites W1899171572 @default.
- W1977471107 cites W1966870578 @default.
- W1977471107 cites W1968145847 @default.
- W1977471107 cites W196958169 @default.
- W1977471107 cites W1971722259 @default.
- W1977471107 cites W1972323255 @default.
- W1977471107 cites W1973591418 @default.
- W1977471107 cites W1976193132 @default.
- W1977471107 cites W1978177807 @default.
- W1977471107 cites W1979214544 @default.
- W1977471107 cites W1982992605 @default.
- W1977471107 cites W1987646385 @default.
- W1977471107 cites W1991430777 @default.
- W1977471107 cites W1992766621 @default.
- W1977471107 cites W1993130046 @default.
- W1977471107 cites W1993603135 @default.
- W1977471107 cites W1994240717 @default.
- W1977471107 cites W1997189899 @default.
- W1977471107 cites W1998707404 @default.
- W1977471107 cites W2000027357 @default.
- W1977471107 cites W2000074090 @default.
- W1977471107 cites W2009007309 @default.
- W1977471107 cites W2009689580 @default.
- W1977471107 cites W2011141022 @default.
- W1977471107 cites W2014832120 @default.
- W1977471107 cites W2015155734 @default.
- W1977471107 cites W2015602078 @default.
- W1977471107 cites W2021129207 @default.
- W1977471107 cites W2022865240 @default.
- W1977471107 cites W2026130437 @default.
- W1977471107 cites W2032608696 @default.
- W1977471107 cites W2036472730 @default.
- W1977471107 cites W2044626444 @default.
- W1977471107 cites W2046013135 @default.
- W1977471107 cites W2047965201 @default.
- W1977471107 cites W2052613121 @default.
- W1977471107 cites W2057455339 @default.
- W1977471107 cites W2057560563 @default.
- W1977471107 cites W2058219615 @default.
- W1977471107 cites W2073709864 @default.
- W1977471107 cites W2080048493 @default.
- W1977471107 cites W2083554094 @default.
- W1977471107 cites W2086163800 @default.
- W1977471107 cites W2086560977 @default.
- W1977471107 cites W2086959586 @default.
- W1977471107 cites W2090020014 @default.
- W1977471107 cites W2092367277 @default.
- W1977471107 cites W2132959473 @default.
- W1977471107 cites W2139711100 @default.
- W1977471107 cites W2139788788 @default.
- W1977471107 cites W2144722007 @default.
- W1977471107 cites W2151360929 @default.
- W1977471107 cites W2153838440 @default.
- W1977471107 cites W2153999726 @default.
- W1977471107 cites W2158848846 @default.
- W1977471107 cites W2163491347 @default.
- W1977471107 cites W2164064298 @default.
- W1977471107 cites W2164757754 @default.
- W1977471107 cites W2169583831 @default.
- W1977471107 cites W2322800101 @default.
- W1977471107 cites W2346191194 @default.
- W1977471107 cites W2615106566 @default.
- W1977471107 doi "https://doi.org/10.1016/j.chemgeo.2007.01.009" @default.
- W1977471107 hasPublicationYear "2007" @default.
- W1977471107 type Work @default.
- W1977471107 sameAs 1977471107 @default.
- W1977471107 citedByCount "53" @default.
- W1977471107 countsByYear W19774711072012 @default.
- W1977471107 countsByYear W19774711072013 @default.
- W1977471107 countsByYear W19774711072014 @default.
- W1977471107 countsByYear W19774711072015 @default.
- W1977471107 countsByYear W19774711072016 @default.
- W1977471107 countsByYear W19774711072017 @default.
- W1977471107 countsByYear W19774711072018 @default.
- W1977471107 countsByYear W19774711072019 @default.
- W1977471107 countsByYear W19774711072020 @default.
- W1977471107 countsByYear W19774711072021 @default.
- W1977471107 countsByYear W19774711072022 @default.
- W1977471107 countsByYear W19774711072023 @default.
- W1977471107 crossrefType "journal-article" @default.
- W1977471107 hasAuthorship W1977471107A5015773109 @default.
- W1977471107 hasAuthorship W1977471107A5016072992 @default.
- W1977471107 hasAuthorship W1977471107A5029351425 @default.
- W1977471107 hasAuthorship W1977471107A5029814244 @default.
- W1977471107 hasAuthorship W1977471107A5046006003 @default.
- W1977471107 hasConcept C101139013 @default.