Matches in SemOpenAlex for { <https://semopenalex.org/work/W1977545273> ?p ?o ?g. }
- W1977545273 endingPage "406" @default.
- W1977545273 startingPage "399" @default.
- W1977545273 abstract "ConspectusReactions on water and ice surfaces and in other aqueous media are ubiquitous in the atmosphere, but the microscopic mechanisms of most of these processes are as yet unknown. This Account examines recent progress in atomistic simulations of such reactions and the insights provided into mechanisms and interpretation of experiments. Illustrative examples are discussed. The main computational approaches employed are classical trajectory simulations using interaction potentials derived from quantum chemical methods. This comprises both ab initio molecular dynamics (AIMD) and semiempirical molecular dynamics (SEMD), the latter referring to semiempirical quantum chemical methods.Presented examples are as follows: (i) Reaction of the (NO+)(NO3–) ion pair with a water cluster to produce the atmospherically important HONO and HNO3. The simulations show that a cluster with four water molecules describes the reaction. This provides a hydrogen-bonding network supporting the transition state. The reaction is triggered by thermal structural fluctuations, and ultrafast changes in atomic partial charges play a key role. This is an example where a reaction in a small cluster can provide a model for a corresponding bulk process. The results support the proposed mechanism for production of HONO by hydrolysis of NO2 (N2O4). (ii) The reactions of gaseous HCl with N2O4 and N2O5 on liquid water surfaces. Ionization of HCl at the water/air interface is followed by nucleophilic attack of Cl– on N2O4 or N2O5. Both reactions proceed by an SN2 mechanism. The products are ClNO and ClNO2, precursors of atmospheric atomic chlorine. Because this mechanism cannot result from a cluster too small for HCl ionization, an extended water film model was simulated. The results explain ClNO formation experiments. Predicted ClNO2 formation is less efficient. (iii) Ionization of acids at ice surfaces. No ionization is found on ideal crystalline surfaces, but the process is efficient on isolated defects where it involves formation of H3O+-acid anion contact ion pairs. This behavior is found in simulations of a model of the ice quasi-liquid layer corresponding to large defect concentrations in crystalline ice. The results are in accord with experiments. (iv) Ionization of acids on wet quartz. A monolayer of water on hydroxylated silica is ordered even at room temperature, but the surface lattice constant differs significantly from that of crystalline ice. The ionization processes of HCl and H2SO4 are of high yield and occur in a few picoseconds. The results are in accord with experimental spectroscopy. (v) Photochemical reactions on water and ice. These simulations require excited state quantum chemical methods. The electronic absorption spectrum of methyl hydroperoxide adsorbed on a large ice cluster is strongly blue-shifted relative to the isolated molecule. The measured and calculated adsorption band low-frequency tails are in agreement. A simple model of photodynamics assumes prompt electronic relaxation of the excited peroxide due to the ice surface. SEMD simulations support this, with the important finding that the photochemistry takes place mainly on the ground state.In conclusion, dynamics simulations using quantum chemical potentials are a useful tool in atmospheric chemistry of water media, capable of comparison with experiment." @default.
- W1977545273 created "2016-06-24" @default.
- W1977545273 creator A5038692311 @default.
- W1977545273 creator A5070755295 @default.
- W1977545273 creator A5077617998 @default.
- W1977545273 creator A5081924213 @default.
- W1977545273 creator A5083649334 @default.
- W1977545273 creator A5088560331 @default.
- W1977545273 creator A5089718969 @default.
- W1977545273 date "2015-02-03" @default.
- W1977545273 modified "2023-10-16" @default.
- W1977545273 title "Computational Studies of Atmospherically-Relevant Chemical Reactions in Water Clusters and on Liquid Water and Ice Surfaces" @default.
- W1977545273 cites W1967186647 @default.
- W1977545273 cites W1968829218 @default.
- W1977545273 cites W1973805881 @default.
- W1977545273 cites W1978087790 @default.
- W1977545273 cites W1984240691 @default.
- W1977545273 cites W1990839331 @default.
- W1977545273 cites W1992361753 @default.
- W1977545273 cites W1995497075 @default.
- W1977545273 cites W2000648149 @default.
- W1977545273 cites W2002669997 @default.
- W1977545273 cites W2015579702 @default.
- W1977545273 cites W2016363836 @default.
- W1977545273 cites W2019344822 @default.
- W1977545273 cites W2026888964 @default.
- W1977545273 cites W2027316998 @default.
- W1977545273 cites W2027531186 @default.
- W1977545273 cites W2030448810 @default.
- W1977545273 cites W2033600147 @default.
- W1977545273 cites W2045465826 @default.
- W1977545273 cites W2046490036 @default.
- W1977545273 cites W2052502262 @default.
- W1977545273 cites W2052632546 @default.
- W1977545273 cites W2058454486 @default.
- W1977545273 cites W2058759675 @default.
- W1977545273 cites W2062846506 @default.
- W1977545273 cites W2063586831 @default.
- W1977545273 cites W2065096041 @default.
- W1977545273 cites W2079322542 @default.
- W1977545273 cites W2079421976 @default.
- W1977545273 cites W2092157292 @default.
- W1977545273 cites W2116223045 @default.
- W1977545273 cites W2127378554 @default.
- W1977545273 cites W2141581439 @default.
- W1977545273 cites W2150427890 @default.
- W1977545273 cites W2158352963 @default.
- W1977545273 cites W2168326489 @default.
- W1977545273 cites W2314666754 @default.
- W1977545273 cites W2315365666 @default.
- W1977545273 cites W2315975849 @default.
- W1977545273 cites W2317165476 @default.
- W1977545273 cites W2317980582 @default.
- W1977545273 cites W2318691890 @default.
- W1977545273 cites W2322811691 @default.
- W1977545273 cites W2326585651 @default.
- W1977545273 cites W2329433022 @default.
- W1977545273 cites W2335527930 @default.
- W1977545273 cites W2413451344 @default.
- W1977545273 cites W3005892601 @default.
- W1977545273 doi "https://doi.org/10.1021/ar500431g" @default.
- W1977545273 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25647299" @default.
- W1977545273 hasPublicationYear "2015" @default.
- W1977545273 type Work @default.
- W1977545273 sameAs 1977545273 @default.
- W1977545273 citedByCount "78" @default.
- W1977545273 countsByYear W19775452732015 @default.
- W1977545273 countsByYear W19775452732016 @default.
- W1977545273 countsByYear W19775452732017 @default.
- W1977545273 countsByYear W19775452732018 @default.
- W1977545273 countsByYear W19775452732019 @default.
- W1977545273 countsByYear W19775452732020 @default.
- W1977545273 countsByYear W19775452732021 @default.
- W1977545273 countsByYear W19775452732022 @default.
- W1977545273 countsByYear W19775452732023 @default.
- W1977545273 crossrefType "journal-article" @default.
- W1977545273 hasAuthorship W1977545273A5038692311 @default.
- W1977545273 hasAuthorship W1977545273A5070755295 @default.
- W1977545273 hasAuthorship W1977545273A5077617998 @default.
- W1977545273 hasAuthorship W1977545273A5081924213 @default.
- W1977545273 hasAuthorship W1977545273A5083649334 @default.
- W1977545273 hasAuthorship W1977545273A5088560331 @default.
- W1977545273 hasAuthorship W1977545273A5089718969 @default.
- W1977545273 hasConcept C112887158 @default.
- W1977545273 hasConcept C147597530 @default.
- W1977545273 hasConcept C159467904 @default.
- W1977545273 hasConcept C161790260 @default.
- W1977545273 hasConcept C164866538 @default.
- W1977545273 hasConcept C177801218 @default.
- W1977545273 hasConcept C178790620 @default.
- W1977545273 hasConcept C178907741 @default.
- W1977545273 hasConcept C185592680 @default.
- W1977545273 hasConcept C199360897 @default.
- W1977545273 hasConcept C2775902025 @default.
- W1977545273 hasConcept C2781442258 @default.
- W1977545273 hasConcept C32909587 @default.
- W1977545273 hasConcept C41008148 @default.
- W1977545273 hasConcept C59593255 @default.