Matches in SemOpenAlex for { <https://semopenalex.org/work/W1977727120> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W1977727120 abstract "A wide variety of fundamental data analyses in machine learning, such as linear and logistic regression, require minimizing a convex function defined by the data. Since the data may contain sensitive information about individuals, and these analyses can leak that sensitive information, it is important to be able to solve convex minimization in a privacy-preserving way.A series of recent results show how to accurately solve a single convex minimization problem in a differentially private manner. However, the same data is often analyzed repeatedly, and little is known about solving multiple convex minimization problems with differential privacy. For simpler data analyses, such as linear queries, there are remarkable differentially private algorithms such as the private multiplicative weights mechanism (Hardt and Rothblum, FOCS 2010) that accurately answer exponentially many distinct queries. In this work, we extend these results to the case of convex minimization and show how to give accurate and differentially private solutions to exponentially many convex minimization problems on a sensitive dataset." @default.
- W1977727120 created "2016-06-24" @default.
- W1977727120 creator A5034669615 @default.
- W1977727120 date "2015-05-20" @default.
- W1977727120 modified "2023-09-24" @default.
- W1977727120 title "Private Multiplicative Weights Beyond Linear Queries" @default.
- W1977727120 cites W1586209290 @default.
- W1977727120 cites W1587575659 @default.
- W1977727120 cites W1873763122 @default.
- W1977727120 cites W1985310469 @default.
- W1977727120 cites W1993116423 @default.
- W1977727120 cites W2021426916 @default.
- W1977727120 cites W2077641783 @default.
- W1977727120 cites W2120629536 @default.
- W1977727120 cites W2121372565 @default.
- W1977727120 cites W2124500503 @default.
- W1977727120 cites W2124612670 @default.
- W1977727120 cites W2129428954 @default.
- W1977727120 cites W2136634395 @default.
- W1977727120 cites W2138865266 @default.
- W1977727120 cites W2150865801 @default.
- W1977727120 cites W2154466129 @default.
- W1977727120 cites W2167372639 @default.
- W1977727120 cites W2169570643 @default.
- W1977727120 cites W4205228770 @default.
- W1977727120 doi "https://doi.org/10.1145/2745754.2745755" @default.
- W1977727120 hasPublicationYear "2015" @default.
- W1977727120 type Work @default.
- W1977727120 sameAs 1977727120 @default.
- W1977727120 citedByCount "39" @default.
- W1977727120 countsByYear W19777271202015 @default.
- W1977727120 countsByYear W19777271202016 @default.
- W1977727120 countsByYear W19777271202017 @default.
- W1977727120 countsByYear W19777271202018 @default.
- W1977727120 countsByYear W19777271202019 @default.
- W1977727120 countsByYear W19777271202020 @default.
- W1977727120 countsByYear W19777271202021 @default.
- W1977727120 countsByYear W19777271202023 @default.
- W1977727120 crossrefType "proceedings-article" @default.
- W1977727120 hasAuthorship W1977727120A5034669615 @default.
- W1977727120 hasBestOaLocation W19777271202 @default.
- W1977727120 hasConcept C111110010 @default.
- W1977727120 hasConcept C112680207 @default.
- W1977727120 hasConcept C11413529 @default.
- W1977727120 hasConcept C126255220 @default.
- W1977727120 hasConcept C134306372 @default.
- W1977727120 hasConcept C145446738 @default.
- W1977727120 hasConcept C147764199 @default.
- W1977727120 hasConcept C157972887 @default.
- W1977727120 hasConcept C23130292 @default.
- W1977727120 hasConcept C2524010 @default.
- W1977727120 hasConcept C33923547 @default.
- W1977727120 hasConcept C41008148 @default.
- W1977727120 hasConcept C42747912 @default.
- W1977727120 hasConceptScore W1977727120C111110010 @default.
- W1977727120 hasConceptScore W1977727120C112680207 @default.
- W1977727120 hasConceptScore W1977727120C11413529 @default.
- W1977727120 hasConceptScore W1977727120C126255220 @default.
- W1977727120 hasConceptScore W1977727120C134306372 @default.
- W1977727120 hasConceptScore W1977727120C145446738 @default.
- W1977727120 hasConceptScore W1977727120C147764199 @default.
- W1977727120 hasConceptScore W1977727120C157972887 @default.
- W1977727120 hasConceptScore W1977727120C23130292 @default.
- W1977727120 hasConceptScore W1977727120C2524010 @default.
- W1977727120 hasConceptScore W1977727120C33923547 @default.
- W1977727120 hasConceptScore W1977727120C41008148 @default.
- W1977727120 hasConceptScore W1977727120C42747912 @default.
- W1977727120 hasLocation W19777271201 @default.
- W1977727120 hasLocation W19777271202 @default.
- W1977727120 hasLocation W19777271203 @default.
- W1977727120 hasOpenAccess W1977727120 @default.
- W1977727120 hasPrimaryLocation W19777271201 @default.
- W1977727120 hasRelatedWork W112690700 @default.
- W1977727120 hasRelatedWork W1557833142 @default.
- W1977727120 hasRelatedWork W1586209290 @default.
- W1977727120 hasRelatedWork W1873763122 @default.
- W1977727120 hasRelatedWork W1982723861 @default.
- W1977727120 hasRelatedWork W1985310469 @default.
- W1977727120 hasRelatedWork W1992926795 @default.
- W1977727120 hasRelatedWork W1993116423 @default.
- W1977727120 hasRelatedWork W2010523825 @default.
- W1977727120 hasRelatedWork W2027595342 @default.
- W1977727120 hasRelatedWork W2053801139 @default.
- W1977727120 hasRelatedWork W2110868467 @default.
- W1977727120 hasRelatedWork W2112380340 @default.
- W1977727120 hasRelatedWork W2119874464 @default.
- W1977727120 hasRelatedWork W2124612670 @default.
- W1977727120 hasRelatedWork W2129428954 @default.
- W1977727120 hasRelatedWork W2167372639 @default.
- W1977727120 hasRelatedWork W2184139426 @default.
- W1977727120 hasRelatedWork W2950902781 @default.
- W1977727120 hasRelatedWork W92292672 @default.
- W1977727120 isParatext "false" @default.
- W1977727120 isRetracted "false" @default.
- W1977727120 magId "1977727120" @default.
- W1977727120 workType "article" @default.