Matches in SemOpenAlex for { <https://semopenalex.org/work/W1977923143> ?p ?o ?g. }
- W1977923143 abstract "MicroRNAs (miRNAs) are a family of non-coding RNAs approximately 21 nucleotides in length that play pivotal roles at the post-transcriptional level in animals, plants and viruses. These molecules silence their target genes by degrading transcription or suppressing translation. Studies have shown that miRNAs are involved in biological responses to a variety of biotic and abiotic stresses. Identification of these molecules and their targets can aid the understanding of regulatory processes. Recently, prediction methods based on machine learning have been widely used for miRNA prediction. However, most of these methods were designed for mammalian miRNA prediction, and few are available for predicting miRNAs in the pre-miRNAs of specific plant species. Although the complete Solanum lycopersicum genome has been published, only 77 Solanum lycopersicum miRNAs have been identified, far less than the estimated number. Therefore, it is essential to develop a prediction method based on machine learning to identify new plant miRNAs. A novel classification model based on a support vector machine (SVM) was trained to identify real and pseudo plant pre-miRNAs together with their miRNAs. An initial set of 152 novel features related to sequential structures was used to train the model. By applying feature selection, we obtained the best subset of 47 features for use with the Back Support Vector Machine-Recursive Feature Elimination (B-SVM-RFE) method for the classification of plant pre-miRNAs. Using this method, 63 features were obtained for plant miRNA classification. We then developed an integrated classification model, miPlantPreMat, which comprises MiPlantPre and MiPlantMat, to identify plant pre-miRNAs and their miRNAs. This model achieved approximately 90% accuracy using plant datasets from nine plant species, including Arabidopsis thaliana, Glycine max, Oryza sativa, Physcomitrella patens, Medicago truncatula, Sorghum bicolor, Arabidopsis lyrata, Zea mays and Solanum lycopersicum. Using miPlantPreMat, 522 Solanum lycopersicum miRNAs were identified in the Solanum lycopersicum genome sequence. We developed an integrated classification model, miPlantPreMat, based on structure-sequence features and SVM. MiPlantPreMat was used to identify both plant pre-miRNAs and the corresponding mature miRNAs. An improved feature selection method was proposed, resulting in high classification accuracy, sensitivity and specificity." @default.
- W1977923143 created "2016-06-24" @default.
- W1977923143 creator A5004629036 @default.
- W1977923143 creator A5008478540 @default.
- W1977923143 creator A5044375127 @default.
- W1977923143 creator A5090921173 @default.
- W1977923143 date "2014-12-01" @default.
- W1977923143 modified "2023-10-07" @default.
- W1977923143 title "Prediction of plant pre-microRNAs and their microRNAs in genome-scale sequences using structure-sequence features and support vector machine" @default.
- W1977923143 cites W144423133 @default.
- W1977923143 cites W1491450013 @default.
- W1977923143 cites W1920564293 @default.
- W1977923143 cites W1987248329 @default.
- W1977923143 cites W1988163167 @default.
- W1977923143 cites W1991429150 @default.
- W1977923143 cites W2016294118 @default.
- W1977923143 cites W2027862889 @default.
- W1977923143 cites W2046930479 @default.
- W1977923143 cites W2051725773 @default.
- W1977923143 cites W2051728363 @default.
- W1977923143 cites W2061011128 @default.
- W1977923143 cites W2063110155 @default.
- W1977923143 cites W2078899492 @default.
- W1977923143 cites W2099855036 @default.
- W1977923143 cites W2106348976 @default.
- W1977923143 cites W2107915254 @default.
- W1977923143 cites W2113133164 @default.
- W1977923143 cites W2114973325 @default.
- W1977923143 cites W2117391818 @default.
- W1977923143 cites W2125970547 @default.
- W1977923143 cites W2140446903 @default.
- W1977923143 cites W2140751493 @default.
- W1977923143 cites W2143426320 @default.
- W1977923143 cites W2150770935 @default.
- W1977923143 cites W2152327613 @default.
- W1977923143 cites W2153635508 @default.
- W1977923143 cites W2154513100 @default.
- W1977923143 cites W2156847802 @default.
- W1977923143 cites W2157039533 @default.
- W1977923143 cites W2313014264 @default.
- W1977923143 cites W2316243772 @default.
- W1977923143 cites W2326455866 @default.
- W1977923143 cites W2911964244 @default.
- W1977923143 doi "https://doi.org/10.1186/s12859-014-0423-x" @default.
- W1977923143 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4310204" @default.
- W1977923143 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25547126" @default.
- W1977923143 hasPublicationYear "2014" @default.
- W1977923143 type Work @default.
- W1977923143 sameAs 1977923143 @default.
- W1977923143 citedByCount "27" @default.
- W1977923143 countsByYear W19779231432015 @default.
- W1977923143 countsByYear W19779231432016 @default.
- W1977923143 countsByYear W19779231432017 @default.
- W1977923143 countsByYear W19779231432018 @default.
- W1977923143 countsByYear W19779231432019 @default.
- W1977923143 countsByYear W19779231432020 @default.
- W1977923143 countsByYear W19779231432021 @default.
- W1977923143 countsByYear W19779231432022 @default.
- W1977923143 countsByYear W19779231432023 @default.
- W1977923143 crossrefType "journal-article" @default.
- W1977923143 hasAuthorship W1977923143A5004629036 @default.
- W1977923143 hasAuthorship W1977923143A5008478540 @default.
- W1977923143 hasAuthorship W1977923143A5044375127 @default.
- W1977923143 hasAuthorship W1977923143A5090921173 @default.
- W1977923143 hasBestOaLocation W19779231431 @default.
- W1977923143 hasConcept C104317684 @default.
- W1977923143 hasConcept C116834253 @default.
- W1977923143 hasConcept C119857082 @default.
- W1977923143 hasConcept C12267149 @default.
- W1977923143 hasConcept C141231307 @default.
- W1977923143 hasConcept C145059251 @default.
- W1977923143 hasConcept C148483581 @default.
- W1977923143 hasConcept C154945302 @default.
- W1977923143 hasConcept C18903297 @default.
- W1977923143 hasConcept C41008148 @default.
- W1977923143 hasConcept C54355233 @default.
- W1977923143 hasConcept C70721500 @default.
- W1977923143 hasConcept C86803240 @default.
- W1977923143 hasConceptScore W1977923143C104317684 @default.
- W1977923143 hasConceptScore W1977923143C116834253 @default.
- W1977923143 hasConceptScore W1977923143C119857082 @default.
- W1977923143 hasConceptScore W1977923143C12267149 @default.
- W1977923143 hasConceptScore W1977923143C141231307 @default.
- W1977923143 hasConceptScore W1977923143C145059251 @default.
- W1977923143 hasConceptScore W1977923143C148483581 @default.
- W1977923143 hasConceptScore W1977923143C154945302 @default.
- W1977923143 hasConceptScore W1977923143C18903297 @default.
- W1977923143 hasConceptScore W1977923143C41008148 @default.
- W1977923143 hasConceptScore W1977923143C54355233 @default.
- W1977923143 hasConceptScore W1977923143C70721500 @default.
- W1977923143 hasConceptScore W1977923143C86803240 @default.
- W1977923143 hasIssue "1" @default.
- W1977923143 hasLocation W19779231431 @default.
- W1977923143 hasLocation W19779231432 @default.
- W1977923143 hasLocation W19779231433 @default.
- W1977923143 hasLocation W19779231434 @default.
- W1977923143 hasOpenAccess W1977923143 @default.
- W1977923143 hasPrimaryLocation W19779231431 @default.
- W1977923143 hasRelatedWork W1996541855 @default.
- W1977923143 hasRelatedWork W2101819884 @default.