Matches in SemOpenAlex for { <https://semopenalex.org/work/W1977970897> ?p ?o ?g. }
- W1977970897 endingPage "136" @default.
- W1977970897 startingPage "107" @default.
- W1977970897 abstract "We propose a simple approach to combining first-order logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a first-order knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the domain, it specifies a ground Markov network containing one feature for each possible grounding of a first-order formula in the KB, with the corresponding weight. Inference in MLNs is performed by MCMC over the minimal subset of the ground network required for answering the query. Weights are efficiently learned from relational databases by iteratively optimizing a pseudo-likelihood measure. Optionally, additional clauses are learned using inductive logic programming techniques. Experiments with a real-world database and knowledge base in a university domain illustrate the promise of this approach." @default.
- W1977970897 created "2016-06-24" @default.
- W1977970897 creator A5018711331 @default.
- W1977970897 creator A5062300635 @default.
- W1977970897 date "2006-01-27" @default.
- W1977970897 modified "2023-10-16" @default.
- W1977970897 title "Markov logic networks" @default.
- W1977970897 cites W107938046 @default.
- W1977970897 cites W121830907 @default.
- W1977970897 cites W1669437150 @default.
- W1977970897 cites W1791364091 @default.
- W1977970897 cites W1964821516 @default.
- W1977970897 cites W1965552673 @default.
- W1977970897 cites W1975130368 @default.
- W1977970897 cites W1989789052 @default.
- W1977970897 cites W2000359198 @default.
- W1977970897 cites W2000805332 @default.
- W1977970897 cites W2005126631 @default.
- W1977970897 cites W2008652694 @default.
- W1977970897 cites W2023502716 @default.
- W1977970897 cites W2051434435 @default.
- W1977970897 cites W2076008912 @default.
- W1977970897 cites W2083855775 @default.
- W1977970897 cites W2086053561 @default.
- W1977970897 cites W2090761873 @default.
- W1977970897 cites W2100738443 @default.
- W1977970897 cites W2106898966 @default.
- W1977970897 cites W2140785063 @default.
- W1977970897 cites W2160842254 @default.
- W1977970897 cites W2165520550 @default.
- W1977970897 cites W28766783 @default.
- W1977970897 cites W2914587038 @default.
- W1977970897 cites W2914728526 @default.
- W1977970897 cites W4206370914 @default.
- W1977970897 cites W4230920720 @default.
- W1977970897 cites W4239696231 @default.
- W1977970897 cites W4293775970 @default.
- W1977970897 cites W83160502 @default.
- W1977970897 cites W950821216 @default.
- W1977970897 cites W2042595601 @default.
- W1977970897 doi "https://doi.org/10.1007/s10994-006-5833-1" @default.
- W1977970897 hasPublicationYear "2006" @default.
- W1977970897 type Work @default.
- W1977970897 sameAs 1977970897 @default.
- W1977970897 citedByCount "2520" @default.
- W1977970897 countsByYear W19779708972012 @default.
- W1977970897 countsByYear W19779708972013 @default.
- W1977970897 countsByYear W19779708972014 @default.
- W1977970897 countsByYear W19779708972015 @default.
- W1977970897 countsByYear W19779708972016 @default.
- W1977970897 countsByYear W19779708972017 @default.
- W1977970897 countsByYear W19779708972018 @default.
- W1977970897 countsByYear W19779708972019 @default.
- W1977970897 countsByYear W19779708972020 @default.
- W1977970897 countsByYear W19779708972021 @default.
- W1977970897 countsByYear W19779708972022 @default.
- W1977970897 countsByYear W19779708972023 @default.
- W1977970897 crossrefType "journal-article" @default.
- W1977970897 hasAuthorship W1977970897A5018711331 @default.
- W1977970897 hasAuthorship W1977970897A5062300635 @default.
- W1977970897 hasBestOaLocation W19779708971 @default.
- W1977970897 hasConcept C111472728 @default.
- W1977970897 hasConcept C119857082 @default.
- W1977970897 hasConcept C124101348 @default.
- W1977970897 hasConcept C128838566 @default.
- W1977970897 hasConcept C134306372 @default.
- W1977970897 hasConcept C138885662 @default.
- W1977970897 hasConcept C154945302 @default.
- W1977970897 hasConcept C155846161 @default.
- W1977970897 hasConcept C177264268 @default.
- W1977970897 hasConcept C177877439 @default.
- W1977970897 hasConcept C199360897 @default.
- W1977970897 hasConcept C2776214188 @default.
- W1977970897 hasConcept C2779382394 @default.
- W1977970897 hasConcept C2780586882 @default.
- W1977970897 hasConcept C33724603 @default.
- W1977970897 hasConcept C33923547 @default.
- W1977970897 hasConcept C41008148 @default.
- W1977970897 hasConcept C42058472 @default.
- W1977970897 hasConcept C4554734 @default.
- W1977970897 hasConcept C49937458 @default.
- W1977970897 hasConcept C5655090 @default.
- W1977970897 hasConcept C80444323 @default.
- W1977970897 hasConcept C98763669 @default.
- W1977970897 hasConceptScore W1977970897C111472728 @default.
- W1977970897 hasConceptScore W1977970897C119857082 @default.
- W1977970897 hasConceptScore W1977970897C124101348 @default.
- W1977970897 hasConceptScore W1977970897C128838566 @default.
- W1977970897 hasConceptScore W1977970897C134306372 @default.
- W1977970897 hasConceptScore W1977970897C138885662 @default.
- W1977970897 hasConceptScore W1977970897C154945302 @default.
- W1977970897 hasConceptScore W1977970897C155846161 @default.
- W1977970897 hasConceptScore W1977970897C177264268 @default.
- W1977970897 hasConceptScore W1977970897C177877439 @default.
- W1977970897 hasConceptScore W1977970897C199360897 @default.
- W1977970897 hasConceptScore W1977970897C2776214188 @default.
- W1977970897 hasConceptScore W1977970897C2779382394 @default.
- W1977970897 hasConceptScore W1977970897C2780586882 @default.