Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978082208> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W1978082208 abstract "We consider the problem of mining from noisy unsupervised data sets. The data point we call noise is an outlier in the current context of data mining, and it has been generally defined as the one locates in low probability regions of an input space. The purpose of the approach for this problem is to detect outliers and to perform efficient mining from noisy unsupervised data. We propose a new iterative sampling approach for this problem, using both model-based clustering and the likelihood given to each example by a trained probabilistic model for finding data points of such low probability regions in an input space. Our method uses an arbitrary probabilistic model as a component model and repeats two steps of sampling non-outliers with high likelihoods (computed by previously obtained models) and training the model with the selected examples alternately. In our experiments, we focused on two-mode and co-occurrence data and empirically evaluated the effectiveness of our proposed method, comparing with two other methods, by using both synthetic and real data sets. From the experiments using the synthetic data sets, we found that the significance level of the performance advantage of our method over the two other methods had more pronounced for higher noise ratios, for both medium- and large-sized data sets. From the experiments using a real noisy data set of protein–protein interactions, a typical co-occurrence data set, we further confirmed the performance of our method for detecting outliers from a given data set. Extended abstracts of parts of the work presented in this paper have appeared in Refs. 1 and 2." @default.
- W1978082208 created "2016-06-24" @default.
- W1978082208 creator A5059001924 @default.
- W1978082208 date "2005-03-01" @default.
- W1978082208 modified "2023-09-26" @default.
- W1978082208 title "EFFICIENT UNSUPERVISED MINING FROM NOISY CO-OCCURRENCE DATA" @default.
- W1978082208 cites W1588100052 @default.
- W1978082208 cites W1601142477 @default.
- W1978082208 cites W1647135810 @default.
- W1978082208 cites W1988790447 @default.
- W1978082208 cites W2045131140 @default.
- W1978082208 cites W2061240327 @default.
- W1978082208 cites W2113654464 @default.
- W1978082208 cites W2124536999 @default.
- W1978082208 cites W2130790725 @default.
- W1978082208 cites W2134731454 @default.
- W1978082208 cites W2140000393 @default.
- W1978082208 cites W2156737316 @default.
- W1978082208 cites W2156909104 @default.
- W1978082208 cites W2159047538 @default.
- W1978082208 cites W2160200253 @default.
- W1978082208 cites W2167869241 @default.
- W1978082208 cites W2170478582 @default.
- W1978082208 cites W4236956086 @default.
- W1978082208 cites W4253461361 @default.
- W1978082208 cites W4254182148 @default.
- W1978082208 doi "https://doi.org/10.1142/s1793005705000093" @default.
- W1978082208 hasPublicationYear "2005" @default.
- W1978082208 type Work @default.
- W1978082208 sameAs 1978082208 @default.
- W1978082208 citedByCount "0" @default.
- W1978082208 crossrefType "journal-article" @default.
- W1978082208 hasAuthorship W1978082208A5059001924 @default.
- W1978082208 hasConcept C115961682 @default.
- W1978082208 hasConcept C124101348 @default.
- W1978082208 hasConcept C151730666 @default.
- W1978082208 hasConcept C153180895 @default.
- W1978082208 hasConcept C154945302 @default.
- W1978082208 hasConcept C160920958 @default.
- W1978082208 hasConcept C177264268 @default.
- W1978082208 hasConcept C199360897 @default.
- W1978082208 hasConcept C2779343474 @default.
- W1978082208 hasConcept C41008148 @default.
- W1978082208 hasConcept C49937458 @default.
- W1978082208 hasConcept C58489278 @default.
- W1978082208 hasConcept C73555534 @default.
- W1978082208 hasConcept C739882 @default.
- W1978082208 hasConcept C79337645 @default.
- W1978082208 hasConcept C86803240 @default.
- W1978082208 hasConcept C99498987 @default.
- W1978082208 hasConceptScore W1978082208C115961682 @default.
- W1978082208 hasConceptScore W1978082208C124101348 @default.
- W1978082208 hasConceptScore W1978082208C151730666 @default.
- W1978082208 hasConceptScore W1978082208C153180895 @default.
- W1978082208 hasConceptScore W1978082208C154945302 @default.
- W1978082208 hasConceptScore W1978082208C160920958 @default.
- W1978082208 hasConceptScore W1978082208C177264268 @default.
- W1978082208 hasConceptScore W1978082208C199360897 @default.
- W1978082208 hasConceptScore W1978082208C2779343474 @default.
- W1978082208 hasConceptScore W1978082208C41008148 @default.
- W1978082208 hasConceptScore W1978082208C49937458 @default.
- W1978082208 hasConceptScore W1978082208C58489278 @default.
- W1978082208 hasConceptScore W1978082208C73555534 @default.
- W1978082208 hasConceptScore W1978082208C739882 @default.
- W1978082208 hasConceptScore W1978082208C79337645 @default.
- W1978082208 hasConceptScore W1978082208C86803240 @default.
- W1978082208 hasConceptScore W1978082208C99498987 @default.
- W1978082208 hasLocation W19780822081 @default.
- W1978082208 hasOpenAccess W1978082208 @default.
- W1978082208 hasPrimaryLocation W19780822081 @default.
- W1978082208 hasRelatedWork W2090668960 @default.
- W1978082208 hasRelatedWork W2143077131 @default.
- W1978082208 hasRelatedWork W2172289703 @default.
- W1978082208 hasRelatedWork W2337929971 @default.
- W1978082208 hasRelatedWork W2359185137 @default.
- W1978082208 hasRelatedWork W3183283580 @default.
- W1978082208 hasRelatedWork W4230206970 @default.
- W1978082208 hasRelatedWork W4250175685 @default.
- W1978082208 hasRelatedWork W73985348 @default.
- W1978082208 hasRelatedWork W2186522517 @default.
- W1978082208 isParatext "false" @default.
- W1978082208 isRetracted "false" @default.
- W1978082208 magId "1978082208" @default.
- W1978082208 workType "article" @default.